Lagunas-Rangel Francisco Alejandro, Åberg Martin, Liao Sifang, Espinelli-Amorim Felippe, Tummaramatti-Hanumant Rajanidevi, Jackeviča Ludmila, Briviba Monta, Liu Wen, Fredriksson Robert, Alsehli Ahmed M, Spjuth Ola, Klovins Janis, Dambrova Maija, Kudłak Błażej, Andersson Claes, Schiöth Helgi B
Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia.
Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
Sci Total Environ. 2025 Aug 25;992:179848. doi: 10.1016/j.scitotenv.2025.179848. Epub 2025 Jun 25.
Environmental pollutants are commonly present in low concentrations, often as complex mixtures that can lead to various interaction phenomena, including synergism, antagonism, or additive effects. These interactions can alter the overall toxicity or biological impact of the mixture when compared to the effects of individual pollutants. While regulatory agencies typically assess the safety of individual pollutants, the cumulative and interactive effects of pollutant mixtures are less well understood. This study aims to address this gap by evaluating the interactions of eight common pollutants (BPA, BADGE, DBP, DEHP, PFOA, 4MBC, OMC, TCEP) at their no observed effect level (NOEL) concentrations. The study specifically focuses on identifying potential synergistic effects on cell viability, transcriptomic changes, and phenotypic outcomes in two biological models: Drosophila and mammalian cell lines. Nearly 400 combinations of pollutants were tested, and their effects were compared to those of individual pollutants and appropriate controls. The results highlighted significant findings, including detrimental effects of the BPA-DBP-OMC mixture on neuronal differentiation and the BADGE-OMC-TCEP mixture's negative impact on muscle differentiation on Drosophila and mammalian cell lines. Cytotoxic synergy effects were also found between bisphenol derivatives and phthalates. These findings emphasize the need to consider the risks associated with pollutant mixtures.
环境污染物通常以低浓度存在,常常是复杂的混合物,可能导致各种相互作用现象,包括协同作用、拮抗作用或相加作用。与单个污染物的影响相比,这些相互作用可能会改变混合物的整体毒性或生物影响。虽然监管机构通常评估单个污染物的安全性,但对污染物混合物的累积和相互作用影响了解较少。本研究旨在通过评估八种常见污染物(双酚A、双酚A二缩水甘油醚、邻苯二甲酸二丁酯、邻苯二甲酸二(2-乙基己基)酯、全氟辛酸、4-甲基苯并三唑、氧苯酮、磷酸三(2-氯乙基)酯)在其未观察到效应水平(NOEL)浓度下的相互作用来填补这一空白。该研究特别关注在两种生物学模型:果蝇和哺乳动物细胞系中,对细胞活力、转录组变化和表型结果的潜在协同作用。测试了近400种污染物组合,并将它们的影响与单个污染物和适当对照的影响进行比较。结果突出了重要发现,包括双酚A-邻苯二甲酸二丁酯-氧苯酮混合物对果蝇和哺乳动物细胞系神经元分化的有害影响,以及双酚A二缩水甘油醚-氧苯酮-磷酸三(2-氯乙基)酯混合物对肌肉分化的负面影响。在双酚衍生物和邻苯二甲酸盐之间也发现了细胞毒性协同作用。这些发现强调了考虑与污染物混合物相关风险的必要性。