Hu Jianbo, Yang Xu, Song Xianyu, Liang Kezhong, Huang Meiying, Zhao Shuangliang, Liu Honglai
Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404020, China.
Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, 404020, China.
J Environ Manage. 2025 Aug;390:126277. doi: 10.1016/j.jenvman.2025.126277. Epub 2025 Jun 25.
Per- and polyfluoroalkyl substances (PFAS), due to their recalcitrance, toxicity, and widespread environmental distribution, have emerged as a critical public health concern. The fate of ultrashort- and short-chain PFAS in the heterogeneous environment remains elusive. To address this, we employed a multiscale approach combining machine learning, density functional theory, molecular dynamics, and experimental validation. This framework enabled the prediction of critical environmental fate parameters, such as octanol-water and lipid-water partition coefficients, pK values, bioconcentration factors, and median lethal concentrations. These predictions demonstrated strong agreement with experimental data (R > 0.785). Using the machine learning-based PathDetect-SOM algorithm, we identified unique reorientation behaviors during membrane penetration, including partial recline, full recline, and oblique insertion. Unlike long-chain PFAS, ultrashort- and short-chain PFAS, particularly in their ionized forms, exhibit monolayer adsorption at lipid membranes, increasing the area per lipid and suggesting distinct toxicological mechanisms. Cytotoxicity assays and reactive oxygen species measurements further corroborated these findings, underscoring the environmental and health risks posed by short-chain PFAS. Structural and toxicological analyses, supported by Pearson correlation metrics and 26 molecular descriptors, revealed that the ionization state of PFAS significantly influences membrane uptake, whereas pK values showed no direct correlation with cytotoxicity. This study establishes a comprehensive framework for predicting the environmental fate and bioaccumulation potential of emerging contaminants, offering critical insights into their behavior in heterogeneous environments.
全氟和多氟烷基物质(PFAS)因其难降解性、毒性和在环境中的广泛分布,已成为一个关键的公共卫生问题。超短链和短链PFAS在非均相环境中的归宿仍不明确。为了解决这一问题,我们采用了一种多尺度方法,将机器学习、密度泛函理论、分子动力学和实验验证相结合。该框架能够预测关键的环境归宿参数,如正辛醇-水和脂质-水分配系数、pK值、生物富集因子和半数致死浓度。这些预测结果与实验数据高度吻合(R > 0.785)。使用基于机器学习的PathDetect-SOM算法,我们确定了膜穿透过程中独特的重排行为,包括部分倾斜、完全倾斜和倾斜插入。与长链PFAS不同,超短链和短链PFAS,特别是其离子化形式,在脂质膜上表现出单层吸附,增加了每个脂质的面积,表明存在不同的毒理学机制。细胞毒性测定和活性氧测量进一步证实了这些发现,强调了短链PFAS对环境和健康的风险。在Pearson相关指标和26个分子描述符的支持下进行的结构和毒理学分析表明,PFAS的离子化状态显著影响膜摄取,而pK值与细胞毒性没有直接相关性。本研究建立了一个预测新兴污染物环境归宿和生物累积潜力的综合框架,为其在非均相环境中的行为提供了关键见解。