Suppr超能文献

基于动态炎症标志物预测晚期胃癌患者抗PD-1治疗原发性耐药的列线图:一项多中心回顾性研究

Nomogram for predicting primary resistance to anti-PD-1 therapy in advanced gastric cancer based on dynamic inflammatory markers: a multicenter retrospective study.

作者信息

Qu Ziting, Hu Yongtao, Qi Xiaowen, Zhang Yan, Wang Zhikun, Wei Xiaoli, Xuan Han, Gu Kangsheng, Zhang Yiyin

机构信息

Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.

Department of Urology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.

出版信息

Int Immunopharmacol. 2025 Sep 23;162:115122. doi: 10.1016/j.intimp.2025.115122. Epub 2025 Jun 25.

Abstract

BACKGROUND

While PD-1 inhibitors have improved clinical outcomes in advanced gastric cancer (AGC), primary resistance remains a significant therapeutic challenge. Although inflammatory markers have shown prognostic potential in immunotherapy, their role in predicting primary resistance to PD-1 inhibitors remains underexplored. We developed and validated an inflammatory marker-based nomogram for predicting primary resistance to anti-PD-1 therapy in AGC patients.

METHODS

This multicenter retrospective study enrolled 314 AGC patients separated into training (N = 191), internal validation (N = 82), and external validation (N = 41) cohorts. Dynamic changes in inflammatory markers were assessed at baseline, after two courses of treatment, and at primary resistance via Wilcoxon signed-rank tests. Multivariate logistic regression was performed to identify independent predictors of primary resistance, which were then included in the nomogram. Receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) were used to assess the model's performance thoroughly.

RESULTS

Overall, primary resistance occurred in 143 patients (45.5 %). After anti-PD-1 therapy, patients who achieved a complete/partial response presented significant decreases in the neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), and systemic immune-inflammatory index (SII) level (all P < 0.001). In contrast, progressive disease was associated with an elevated NLR (P < 0.001), PLR (P < 0.010), and SII (P < 0.001) and a reduced prognostic nutritional index (PNI, P < 0.001). At primary resistance onset, NLR levels were markedly greater and PNI levels were lower than those at baseline (all P < 0.001). Furthermore, treatment lines (P = 0.002), HER-2 negativity (P = 0.049), high SII (P = 0.001) and low PNI after 2 courses of treatment (P = 0.001) were independent predictors of primary resistance. The nomogram integrating these factors demonstrated robust discrimination (training AUC: 0.767, internal/external validation AUC: 0.756/0.729) with optimal calibration and clinical utility in DCA.

CONCLUSION

Longitudinal inflammatory marker profiling enables dynamic monitoring of anti-PD-1 therapeutic response. The primary resistance prediction nomogram developed on the basis of inflammatory markers provides an essential reference for risk stratification and therapeutic decision-making in AGC patients receiving anti-PD-1 treatment.

摘要

背景

虽然PD-1抑制剂改善了晚期胃癌(AGC)的临床疗效,但原发性耐药仍然是一个重大的治疗挑战。尽管炎症标志物在免疫治疗中已显示出预后潜力,但其在预测对PD-1抑制剂的原发性耐药方面的作用仍未得到充分探索。我们开发并验证了一种基于炎症标志物的列线图,用于预测AGC患者对抗PD-1治疗的原发性耐药。

方法

这项多中心回顾性研究纳入了314例AGC患者,分为训练队列(N = 191)、内部验证队列(N = 82)和外部验证队列(N = 41)。通过Wilcoxon符号秩检验评估基线、两个疗程治疗后以及原发性耐药时炎症标志物的动态变化。进行多变量逻辑回归以确定原发性耐药的独立预测因素,然后将其纳入列线图。使用受试者工作特征(ROC)曲线、校准曲线和决策曲线分析(DCA)全面评估模型的性能。

结果

总体而言,143例患者(45.5%)出现原发性耐药。抗PD-1治疗后,达到完全/部分缓解的患者中性粒细胞与淋巴细胞比值(NLR)、血小板与淋巴细胞比值(PLR)和全身免疫炎症指数(SII)水平显著降低(均P < 0.001)。相比之下,疾病进展与NLR升高(P < 0.001)、PLR升高(P < 0.010)、SII升高(P < 0.001)以及预后营养指数(PNI)降低(P < 0.001)相关。在原发性耐药开始时,NLR水平明显高于基线,PNI水平低于基线(均P < 0.001)。此外,治疗线数(P = 0.002)、HER-2阴性(P = 0.049)、高SII(P = 0.001)和两个疗程治疗后低PNI(P = 0.001)是原发性耐药的独立预测因素。整合这些因素的列线图显示出强大 的辨别力(训练队列AUC:0.767,内部/外部验证队列AUC:0.756/0.729),在DCA中具有最佳校准和临床实用性。

结论

纵向炎症标志物分析能够动态监测抗PD-1治疗反应。基于炎症标志物开发的原发性耐药预测列线图为接受抗PD-1治疗的AGC患者的风险分层和治疗决策提供了重要参考。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验