Suppr超能文献

使用先进分析工具优化医学放射技师排班表。

Optimization of medical radiation technologist schedules using advanced analytical tools.

作者信息

Tasleem Najib, Hoang Linh, Chenmeyer Aileen, Salameh Moataz, Belimova Tatiana, Chandhok Amit

机构信息

Smith School of Business, Queen's University, 99 University Ave, Kingston, ON K7L 3N6, Canada.

Smith School of Business, Queen's University, 99 University Ave, Kingston, ON K7L 3N6, Canada.

出版信息

J Med Imaging Radiat Sci. 2025 Sep;56(5):102000. doi: 10.1016/j.jmir.2025.102000. Epub 2025 Jun 26.

Abstract

INTRODUCTION/BACKGROUND: Medical imaging departments are facing significant workforce challenges due to a shortage of medical radiation technologists (MRTs), leading to increased wait times and staff burnout. Traditional manual scheduling methods are time-consuming, prone to error, and contribute to staff dissatisfaction. To address these operational challenges and improve clinical workflow, a quality improvement initiative was undertaken to optimize MRT scheduling using advanced analytical tools.

METHODS

A cost-constrained optimization model was developed using Microsoft Excel's Solver tool. Staffing data from the University Health Network (UHN) medical imaging department served as the basis for model design. Key constraints included staff availability, fairness in shift assignments, overtime cost minimization, and maximum consecutive shifts. The model incorporated full-time, casual, and agency staff, with an emphasis on equitable work distribution and cost control.

RESULTS

The optimized scheduling model successfully created a fair, fully staffed 4-week schedule while minimizing costs. Full-time MRTs were assigned 40-hour work weeks without exceeding contractual limits, and agency and casual staff were effectively integrated to prevent overtime. The model reduced the time required to generate schedules and minimized common errors such as double-booking and uneven shift distribution.

DISCUSSION

The use of an advanced analytical approach for MRT scheduling demonstrates a practical, scalable solution for healthcare organizations. By aligning shift assignments with operational demands and human resource principles, the initiative supports staff well-being, promotes workplace fairness, and contributes to improved patient care delivery. Importantly, this method is cost-effective and can be adapted to other clinical departments facing similar staffing and scheduling challenges.

CONCLUSION

This quality improvement initiative highlights the potential for healthcare departments to leverage simple yet powerful optimization tools to enhance clinical operations. The successful implementation of an analytical scheduling model in a high-volume medical imaging department underscores the value of evidence-informed process improvements at the frontline of clinical practice.

摘要

引言/背景:由于医学放射技师(MRT)短缺,医学影像科面临着巨大的劳动力挑战,导致等待时间延长和员工倦怠。传统的手工排班方法耗时、容易出错,且会导致员工不满。为应对这些运营挑战并改善临床工作流程,开展了一项质量改进计划,以使用先进的分析工具优化MRT排班。

方法

使用微软Excel的求解器工具开发了一个成本受限的优化模型。大学健康网络(UHN)医学影像科的人员配置数据作为模型设计的基础。关键约束条件包括员工可用性、轮班分配公平性、加班成本最小化以及连续最大轮班次数。该模型纳入了全职、临时和代理员工,重点是公平的工作分配和成本控制。

结果

优化后的排班模型成功创建了一个公平、全员配备的4周排班表,同时将成本降至最低。全职MRT被安排每周工作40小时,未超过合同限制,并且有效地整合了代理和临时员工以防止加班。该模型减少了生成排班表所需的时间,并将诸如重复预约和轮班分配不均等常见错误降至最低。

讨论

将先进的分析方法用于MRT排班为医疗机构展示了一个实用、可扩展的解决方案。通过使轮班分配与运营需求和人力资源原则保持一致,该计划支持员工福祉,促进工作场所公平,并有助于改善患者护理服务。重要的是,这种方法具有成本效益,并且可以适用于面临类似人员配置和排班挑战的其他临床科室。

结论

这项质量改进计划凸显了医疗部门利用简单而强大的优化工具来加强临床运营的潜力。在一个繁忙的医学影像科成功实施分析排班模型强调了在临床实践一线进行循证流程改进的价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验