Suppr超能文献

整合基因多态性和临床数据以开发乳腺癌放射治疗中皮肤毒性的预测模型。

Integrating genetic polymorphisms and clinical data to develop predictive models for skin toxicity in breast cancer radiation therapy.

作者信息

Aguado-Flor Ester, Reyes Victoria M, Navarro Víctor, Mollà Meritxell, Aguado-Barrera Miguel E, Altabas Manuel, Azria David, Baten Adinda, Bourgier Celine, Bultijnck Renée, Chang-Claude Jenny, De Santis Maria Carmen, Dunning Alison M, Duran-Lozano Laura, Elliott Rebecca M, Farcy Jacquet Marie-Pierre, Giandini Carlotta, Giraldo Alexandra, Green Sheryl, Lambrecht Maarten, Lopez-Pleguezuelos Carlos, Monten Chris, Rancati Tiziana, Rattay Tim, Rosenstein Barry S, De Ruysscher Dirk, Diez Orland, Seibold Petra, Sperk Elena, Symonds R Paul, Stobart Hilary, Vega Ana, Veldeman Liv, Villacampa Guillermo, Webb Adam J, Weltens Caroline, Zunino Paolo, Talbot Christopher J, West Catharine M, Giralt Jordi, Gutiérrez-Enríquez Sara

机构信息

Hereditary Cancer Genetics Group, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; University of Barcelona, Barcelona, Spain.

Department of Radiation Oncology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.

出版信息

Breast. 2025 Aug;82:104506. doi: 10.1016/j.breast.2025.104506. Epub 2025 May 22.

Abstract

BACKGROUND

We aim to develop and validate predictive models for acute and late skin toxicity in breast cancer (BC) patients undergoing radiation therapy (RT). Models incorporate a genetic profile-comprising candidate single nucleotide polymorphisms (SNPs) in non-coding RNAs and previously reported toxicity-associated variants-combined with clinical variables.

METHODS

The study involved 1979 BC patients monitored for two to eight years post-RT in a multi-centre study. We assessed acute (oedema/erythema) and late (atrophy/fibrosis) toxicity using logistic regression and Cox proportional hazards models. The cohort was divided into training and validation datasets.

RESULTS

Six SNPs demonstrated to be predictors of acute (rs13116075, rs12565978, rs72550778 and rs7284767) and late toxicity (rs16837908 and rs61764370) either in the training or validation cohort. However, none of these SNPs were consistently associated with toxicity across both stages of analysis. The rs13116075, rs12565978 and rs16837908 were previously reported to be associated with RT toxicity. In the validation phase, SNP-based models showed limited predictive ability, with AUC values of 0.49 and c-index of 0.54 for acute and late toxicity, respectively. Models incorporating either clinical variables alone or in combination with SNPs achieved similar AUC and c-index values of ∼0.60 for acute and late toxicity, respectively. However, the combined model exhibited the highest predictive accuracy for acute and late toxicity, both in the training and the validation cohorts.

CONCLUSIONS

Our findings highlight the importance of combining clinical data with genetic markers to enhance the accuracy of models predicting RT toxicity in BC.

摘要

背景

我们旨在开发并验证用于接受放射治疗(RT)的乳腺癌(BC)患者急性和晚期皮肤毒性的预测模型。模型纳入了一个基因图谱,该图谱包含非编码RNA中的候选单核苷酸多态性(SNP)以及先前报道的毒性相关变异,并结合了临床变量。

方法

该研究纳入了1979例BC患者,这些患者在一项多中心研究中接受了放疗后两到八年的监测。我们使用逻辑回归和Cox比例风险模型评估急性(水肿/红斑)和晚期(萎缩/纤维化)毒性。该队列被分为训练数据集和验证数据集。

结果

在训练或验证队列中,六个SNP被证明是急性毒性(rs13116075、rs12565978、rs72550778和rs7284767)和晚期毒性(rs16837908和rs61764370)的预测指标。然而,在两个分析阶段中,这些SNP均未始终与毒性相关。rs13116075、rs12565978和rs16837908先前被报道与放疗毒性相关。在验证阶段,基于SNP的模型显示出有限的预测能力,急性和晚期毒性的AUC值分别为0.49和c指数为0.54。仅纳入临床变量或与SNP结合的模型在急性和晚期毒性方面分别实现了相似的AUC和c指数值,约为0.60。然而,在训练和验证队列中,联合模型对急性和晚期毒性均表现出最高的预测准确性。

结论

我们的研究结果强调了将临床数据与基因标记相结合以提高预测BC放疗毒性模型准确性的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验