Suppr超能文献

亚洲人群耐药性癫痫(DRE)的危险因素及列线图模型

Risk factors and a nomogram model for drug-resistant epilepsy (DRE) in Asian population.

作者信息

Chen Yangju, Tang Rong, Shao Zhihai, Li Wei, Fei Guoqiang, Wang Xin

机构信息

Department of Neurology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China.

Department of Neurology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China; Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.

出版信息

Clin Neurol Neurosurg. 2025 Sep;256:109009. doi: 10.1016/j.clineuro.2025.109009. Epub 2025 Jun 5.

Abstract

OBJECTIVE

Epilepsy is one of the most widespread neurological diseases, affecting millions globally. Despite the effectiveness of antiepileptic drugs (AEDs), 20-30 % of patients develop into drug-resistant epilepsy (DRE). Identifying early risk factors for DRE could guide timely interventions. This study targeted to build a nomogram model for predicting DRE in Asian epilepsy patients based on clinical and imaging risk factors.

METHODS

A retrospective cohort study was carried out on 452 epilepsy patients treated at Zhongshan Hospital (Xiamen) from Aug 2018 to Aug 2023. Patients were classified into drug-sensitive epilepsy (DSE) and DRE groups. Data on clinical characteristics, VEEG, and MRI findings(a total of 20 parameters) were analyzed. Univariate and multivariate logistic regression identified significant risk factors for DRE, which were incorporated into a nomogram. The model's function was validated using receiver operating characteristic (ROC) curves, concordance index (C-index), and calibration plots.

RESULTS

Of the 452 patients, 122 (27 %) were classified as having DRE. Multivariate analysis identified five independent risk factors: age of onset, abnormal MRI findings, seizure duration, seizure frequency, and multiple seizure types. The nomogram demonstrated good predictive fidelity, with an AUC of 0.88 in the training set and 0.83 in the validation set, and calibration plots testify strong agreement between predicted and inspected outcomes.

CONCLUSION

The developed nomogram provides a worthwhile tool for predicting DRE in Asian patients, aiding early intervention strategies. Moreover, the model reveals highly predictive accuracy. Hence, the nomogram prediction model can serve well in the promptly distinction of DRE in Asian.

摘要

目的

癫痫是最常见的神经疾病之一,全球数百万人受其影响。尽管抗癫痫药物(AEDs)有效,但仍有20%-30%的患者发展为药物难治性癫痫(DRE)。识别DRE的早期危险因素可指导及时干预。本研究旨在基于临床和影像学危险因素构建一个列线图模型,用于预测亚洲癫痫患者的DRE。

方法

对2018年8月至2023年8月在厦门中山医院接受治疗的452例癫痫患者进行回顾性队列研究。将患者分为药物敏感性癫痫(DSE)组和DRE组。分析临床特征、视频脑电图(VEEG)和磁共振成像(MRI)结果(共20项参数)的数据。单因素和多因素逻辑回归确定DRE的显著危险因素,并将其纳入列线图。使用受试者操作特征(ROC)曲线、一致性指数(C-index)和校准图验证模型的功能。

结果

452例患者中,122例(27%)被归类为患有DRE。多因素分析确定了五个独立危险因素:发病年龄、MRI异常结果、发作持续时间、发作频率和多种发作类型。列线图显示出良好的预测准确性,训练集的AUC为0.88,验证集的AUC为0.83,校准图表明预测结果与观察结果之间高度一致。

结论

所开发的列线图为预测亚洲患者的DRE提供了一个有价值的工具,有助于早期干预策略。此外,该模型显示出高度的预测准确性。因此,列线图预测模型可很好地用于亚洲DRE的快速鉴别。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验