Suppr超能文献

自旋轨道耦合空位有序过渡金属卤化物的电子结构与大磁各向异性能量的形成

Electronic structure of spin-orbit coupled vacancy ordered transition metal halides and formation of large magnetic anisotropy energy.

作者信息

Chauhan Amit, Nanda B R K

机构信息

Condensed Matter Theory and Computational Lab, Department of Physics, IIT Madras, Chennai 36, India.

Center for Atomistic Modelling and Materials Design, IIT Madras, Chennai 36, India.

出版信息

J Phys Condens Matter. 2025 Jul 8;37(28). doi: 10.1088/1361-648X/ade8c9.

Abstract

Vacancy-ordered antifluorite materials (ABX) are garnering renewed attention as novel magnetic states driven by spin-orbit coupling (SOC) can be realized in them. In this work, by pursuing density functional theory calculations and model studies, we analyze the ground state electronic and magnetic structure of face-centered cubic antifluorites KReCl(KReC, 5), KOsCl(KOsC, 5), and KIrCl(KIrC, 5). We find that KReC stabilizes in the high-spin = 3/2 state due to large exchange-splitting as compared to the SOC strength. The KOsC stabilizes in = 1 simple Mott insulating state while KIrC stabilizes inJeff = 1/2 spin-orbit-assisted Mott insulating state. The presence of an isolated metal-chloride octahedron makes these antifluorites weakly coupled magnetic systems with the nearest and next-nearest-neighbor spin-exchange parameters (and) are of the order of 1 meV. For KReC and KOsC, theandare estimated to be antiferromagnetic and ferromagnetic, which leads to a Type-I antiferromagnetic ground state, whereas for KIrC, bothandare antiferromagnetic, hence, it stabilizes with a Type-III antiferromagnetic state. Interestingly, in their equilibrium structure, these antifluorites possess large magnetic anisotropy energy (MAE) (0.6-4 meV/transition metal), which is at least one-to-two orders higher than traditional MAE materials like transition metals and multilayers formed out of them. Moreover, with epitaxial tensile/compressive strain, the MAE enhances by one order, becoming giant for KOsC (20-40 meV/Os).

摘要

空位有序反萤石材料(ABX)正重新受到关注,因为在其中可以实现由自旋轨道耦合(SOC)驱动的新型磁态。在这项工作中,通过进行密度泛函理论计算和模型研究,我们分析了面心立方反萤石KReCl(KReC,5)、KOsCl(KOsC,5)和KIrCl(KIrC,5)的基态电子和磁结构。我们发现,与SOC强度相比,由于大的交换分裂,KReC稳定在高自旋S = 3/2态。KOsC稳定在S = 1的简单莫特绝缘态,而KIrC稳定在Jeff = 1/2的自旋轨道辅助莫特绝缘态。孤立的金属 - 氯八面体的存在使这些反萤石成为弱耦合磁系统,其最近邻和次近邻自旋交换参数(J1和J2)约为1 meV。对于KReC和KOsC,J1和J2估计分别为反铁磁和铁磁,这导致I型反铁磁基态,而对于KIrC,J1和J2均为反铁磁,因此它以III型反铁磁态稳定。有趣的是,在它们的平衡结构中,这些反萤石具有大的磁各向异性能量(MAE)(0.6 - 4 meV/过渡金属),这比传统的MAE材料如过渡金属及其形成的多层膜至少高1 - 2个数量级。此外,通过外延拉伸/压缩应变,MAE增强一个数量级,对于KOsC(20 - 40 meV/Os)变为巨大。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验