Muhammad Haris, Nam Haewoon
Department of Electrical Engineering, Hanyang University, Ansan 15588, Republic of Korea.
Sensors (Basel). 2025 Jun 9;25(12):3620. doi: 10.3390/s25123620.
Optimizing sensor node coverage remains a central challenge in wireless sensor networks (WSNs), where premature convergence and suboptimal solutions in traditional optimization methods often lead to coverage gaps and uneven node distribution. To address these issues, this paper presents a novel velocity-scaled adaptive search factor particle swarm optimization (VASF-PSO) algorithm that integrates dynamic mechanisms to enhance population diversity, guide the search process more effectively, and reduce uncovered areas. The proposed algorithm is evaluated through extensive simulations across multiple WSN deployment scenarios with varying node densities, sensing ranges, and monitoring area sizes. Comparative results demonstrate that the approach consistently outperforms several widely used metaheuristic algorithms, achieving faster convergence, better global exploration, and significantly improved coverage performance. On average, the proposed method yields up to 14.71% higher coverage rates than baseline techniques. These findings underscore the algorithm's robustness and suitability for efficient and scalable WSN deployments.
在无线传感器网络(WSN)中,优化传感器节点覆盖仍然是一个核心挑战,传统优化方法中的过早收敛和次优解决方案常常导致覆盖漏洞和节点分布不均。为了解决这些问题,本文提出了一种新颖的速度缩放自适应搜索因子粒子群优化(VASF-PSO)算法,该算法集成了动态机制,以增强种群多样性,更有效地引导搜索过程,并减少未覆盖区域。通过在具有不同节点密度、传感范围和监测区域大小的多个WSN部署场景中进行广泛的模拟,对所提出的算法进行了评估。比较结果表明,该方法始终优于几种广泛使用的元启发式算法,实现了更快的收敛、更好的全局探索以及显著提高的覆盖性能。平均而言,所提出的方法比基线技术的覆盖率高出14.71%。这些发现强调了该算法对于高效且可扩展的WSN部署的鲁棒性和适用性。