Anwar Raja Waseem, Abrar Mohammad, Salam Abdu, Ullah Faizan
Department of Computer Science, German University of Technology in Oman, Muscat, Oman.
Faculty of Computer Studies, Arab Open University, Muscat, Oman.
PeerJ Comput Sci. 2025 Mar 28;11:e2751. doi: 10.7717/peerj-cs.2751. eCollection 2025.
Intrusion detection in Internet of Things (IoT)-based wireless sensor networks (WSNs) is essential due to their widespread use and inherent vulnerability to security breaches. Traditional centralized intrusion detection systems (IDS) face significant challenges in data privacy, computational efficiency, and scalability, particularly in resource-constrained IoT environments. This study aims to create and assess a federated learning (FL) framework that integrates with long short-term memory (LSTM) networks for efficient intrusion detection in IoT-based WSNs. We design the framework to enhance detection accuracy, minimize false positive rates (FPR), and ensure data privacy, while maintaining system scalability. Using an FL approach, multiple IoT nodes collaboratively train a global LSTM model without exchanging raw data, thereby addressing privacy concerns and improving detection capabilities. The proposed model was tested on three widely used datasets: WSN-DS, CIC-IDS-2017, and UNSW-NB15. The evaluation metrics for its performance included accuracy, F1 score, FPR, and root mean square error (RMSE). We evaluated the performance of the FL-based LSTM model against traditional centralized models, finding significant improvements in intrusion detection. The FL-based LSTM model achieved higher accuracy and a lower FPR across all datasets than centralized models. It effectively managed sequential data in WSNs, ensuring data privacy while maintaining competitive performance, particularly in complex attack scenarios. FL and LSTM networks work well together to make a strong way to find intrusions in IoT-based WSNs, which improves both privacy and detection. This study underscores the potential of FL-based systems to address key challenges in IoT security, including data privacy, scalability, and performance, making the proposed framework suitable for real-world IoT applications.
基于物联网(IoT)的无线传感器网络(WSN)中的入侵检测至关重要,因为它们被广泛使用且本身容易受到安全漏洞的影响。传统的集中式入侵检测系统(IDS)在数据隐私、计算效率和可扩展性方面面临重大挑战,特别是在资源受限的物联网环境中。本研究旨在创建并评估一个联合学习(FL)框架,该框架与长短期记忆(LSTM)网络集成,用于基于物联网的无线传感器网络中的高效入侵检测。我们设计该框架以提高检测准确性、最小化误报率(FPR)并确保数据隐私,同时保持系统可扩展性。使用FL方法,多个物联网节点协作训练一个全局LSTM模型,而无需交换原始数据,从而解决隐私问题并提高检测能力。所提出的模型在三个广泛使用的数据集上进行了测试:WSN-DS、CIC-IDS-2017和UNSW-NB15。其性能的评估指标包括准确性、F1分数、FPR和均方根误差(RMSE)。我们将基于FL的LSTM模型的性能与传统集中式模型进行了评估,发现入侵检测有显著改进。基于FL的LSTM模型在所有数据集上均比集中式模型实现了更高的准确性和更低的FPR。它有效地管理了无线传感器网络中的顺序数据,在保持竞争性能的同时确保了数据隐私,特别是在复杂攻击场景中。FL和LSTM网络协同工作,为在基于物联网的无线传感器网络中发现入侵提供了一种强大的方法,提高了隐私性和检测能力。本研究强调了基于FL的系统在解决物联网安全中的关键挑战(包括数据隐私、可扩展性和性能)方面的潜力,使得所提出的框架适用于实际的物联网应用。