Li Yang, Zheng Yongping, Song Leipeng, Yao Zhefan, Zhang Hui, Wang Yonglin, Fei Zhengshun, Xu Xiaozhou, Xiang Xinjian
School of Automation and Electrical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
Laisiao Integrated Home Furnishing Co., Ltd., Jiaxing 314011, China.
Sensors (Basel). 2025 Jun 10;25(12):3642. doi: 10.3390/s25123642.
Under low-temperature conditions, the load-bearing capacity of piezoelectric stacks arises from coupled thermo-electro-mechanical interactions, with temperature fluctuations, compressive prestress, and excitation voltage critically modulating performance. This study introduces an integrated measurement platform to systematically quantify these interdependencies, employing a cantilever-based sensing mechanism where bending strain serves as a direct metric of load-bearing capacity. A particle swarm-optimized theoretical framework guides the spatial configuration of actuators and sensors, maximizing strain signal fidelity while suppressing noise interference. Experimental characterization reveals three key findings: 1. Voltage-dependent linear enhancement of load-bearing capacity across all operational regimes, unaffected by thermal or mechanical variations; 2. Prestress-induced amplification (79-90% increase from 0 to 6 MPa) and thermally driven attenuation (15-30% reduction from 20 to -70 °C) of static performance; 3. Frequency-dependent degradation (1-6 Hz) in dynamic load-bearing capacity. The methodology establishes a robust foundation for designing multiphysics-compatible instrumentation systems, enabling precise evaluation of smart material behavior under extreme coupled-field conditions.
在低温条件下,压电叠堆的承载能力源于热-电-机械相互作用的耦合,温度波动、压缩预应力和激励电压对其性能有至关重要的调节作用。本研究引入了一个集成测量平台,以系统地量化这些相互依存关系,采用基于悬臂的传感机制,其中弯曲应变作为承载能力的直接度量。一个粒子群优化的理论框架指导着致动器和传感器的空间配置,在抑制噪声干扰的同时最大化应变信号保真度。实验表征揭示了三个关键发现:1. 在所有运行状态下,承载能力随电压呈线性增强,不受热或机械变化的影响;2. 预应力引起静态性能放大(从0到6 MPa增加79-90%)以及热驱动衰减(从20到-70 °C降低15-30%);3. 动态承载能力随频率下降(1-6 Hz)。该方法为设计多物理兼容的仪器系统奠定了坚实基础,能够在极端耦合场条件下精确评估智能材料的行为。