文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种基于聚赖氨酸的RBD粘膜疫苗在小鼠中诱导出强效抗体反应。

A Poly-Lysine-Based RBD Mucosal Vaccine Induces Potent Antibody Responses in Mice.

作者信息

Xu Huifang, Wang Han, Sun Peng, Wang Tiantian, Zhang Bin, Hou Xuchen, Wu Jun, Liu Bo

机构信息

Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Street, Fengtai District, Beijing 100071, China.

School of Basic Medical Sciences, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China.

出版信息

Vaccines (Basel). 2025 May 29;13(6):582. doi: 10.3390/vaccines13060582.


DOI:10.3390/vaccines13060582
PMID:40573913
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12197615/
Abstract

(1) Background: The COVID-19 pandemic highlights the critical necessity for the development of mucosal vaccines. (2) Objective: In this study, we aimed to develop mucosal vaccines based on the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein. (3) Methods: We engineered the RBD of the Spike protein by incorporating ten lysine residues (K10), thereby enhancing its positive charge under physiological conditions. (4) Results: Although this modification did not directly augment the immunogenicity of the antigen, its combination with the mucosal adjuvant cholera toxin B subunit (CTB) and administration via the pulmonary route in BALB/c mice resulted in the induction of robust neutralizing antibody titers. Antigen-specific antibody responses were observed in both serum and bronchoalveolar lavage fluid. Importantly, serum IgG antibody titers remained above 10 six months following third immunization, suggesting the establishment of sustained long-term immunity. Additionally, the incorporation of five lysine residues (K5) into the RBD, in conjunction with CTB, significantly increased serum IgG and IgA antibody titers. (5) Conclusions: Adding poly-lysine to RBD and combining it with CTB can stimulate robust mucosal and humoral immune responses in mice. These findings offer valuable insights for the design of subunit mucosal vaccines.

摘要

(1) 背景:新型冠状病毒肺炎大流行凸显了开发黏膜疫苗的迫切必要性。(2) 目的:在本研究中,我们旨在基于严重急性呼吸综合征冠状病毒2刺突蛋白的受体结合域(RBD)开发黏膜疫苗。(3) 方法:我们通过掺入十个赖氨酸残基(K10)对刺突蛋白的RBD进行工程改造,从而在生理条件下增强其正电荷。(4) 结果:尽管这种修饰并未直接增强抗原的免疫原性,但将其与黏膜佐剂霍乱毒素B亚基(CTB)结合并通过肺部途径给予BALB/c小鼠后,诱导产生了强大的中和抗体滴度。在血清和支气管肺泡灌洗液中均观察到了抗原特异性抗体反应。重要的是,第三次免疫后六个月血清IgG抗体滴度仍保持在10以上,表明建立了持续的长期免疫。此外,在RBD中掺入五个赖氨酸残基(K5)并与CTB结合,显著提高了血清IgG和IgA抗体滴度。(5) 结论:在RBD中添加聚赖氨酸并与CTB结合可在小鼠中刺激强大的黏膜和体液免疫反应。这些发现为亚单位黏膜疫苗的设计提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86d4/12197615/f49482fc6058/vaccines-13-00582-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86d4/12197615/a546cc635dae/vaccines-13-00582-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86d4/12197615/56eb09810b96/vaccines-13-00582-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86d4/12197615/eba2f101ca2a/vaccines-13-00582-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86d4/12197615/c8218d8a8358/vaccines-13-00582-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86d4/12197615/9dab94bce8c8/vaccines-13-00582-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86d4/12197615/9127d4aa0c16/vaccines-13-00582-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86d4/12197615/20a8164bc37c/vaccines-13-00582-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86d4/12197615/f49482fc6058/vaccines-13-00582-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86d4/12197615/a546cc635dae/vaccines-13-00582-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86d4/12197615/56eb09810b96/vaccines-13-00582-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86d4/12197615/eba2f101ca2a/vaccines-13-00582-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86d4/12197615/c8218d8a8358/vaccines-13-00582-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86d4/12197615/9dab94bce8c8/vaccines-13-00582-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86d4/12197615/9127d4aa0c16/vaccines-13-00582-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86d4/12197615/20a8164bc37c/vaccines-13-00582-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86d4/12197615/f49482fc6058/vaccines-13-00582-g008.jpg

相似文献

[1]
A Poly-Lysine-Based RBD Mucosal Vaccine Induces Potent Antibody Responses in Mice.

Vaccines (Basel). 2025-5-29

[2]
Mucosal and Serum Neutralization Immune Responses Elicited by COVID-19 mRNA Vaccination in Vaccinated and Breakthrough-Infection Individuals: A Longitudinal Study from Louisville Cohort.

Vaccines (Basel). 2025-5-24

[3]
Humoral and Cellular Immune Responses to SARS-CoV-2 in Participants with Head and Neck Cancer.

Viruses. 2025-6-13

[4]
The spike 486 site is a key immune evasion point and a determinant of the immunogenicity of the RBD-dimer mRNA vaccine against SARS-CoV-2 variants.

Virology. 2025-6-20

[5]
Antibody tests for identification of current and past infection with SARS-CoV-2.

Cochrane Database Syst Rev. 2022-11-17

[6]
Immunogenicity and seroefficacy of pneumococcal conjugate vaccines: a systematic review and network meta-analysis.

Health Technol Assess. 2024-7

[7]
Ethnic Comparisons of Spike-Specific CD4+ T Cells, Serological Responses, and Neutralizing Antibody Titers Against SARS-CoV-2 Variants.

Vaccines (Basel). 2025-6-4

[8]
SARS-CoV-2 Receptor Binding Domain (RBD) Protein-Protein Conjugate Induces Similar or Better Antibody Responses as Spike mRNA in Rhesus Macaques.

Vaccines (Basel). 2025-6-17

[9]
Comparative Analysis of Anti-receptor Binding Domain (RBD) IgG Responses to Homologous and Heterologous SARS-CoV-2 Vaccine Regimens: A Study From Bangladesh.

Cureus. 2025-5-29

[10]
Exposure of progressive immune dysfunction by SARS-CoV-2 mRNA vaccination in patients with chronic lymphocytic leukemia: A prospective cohort study.

PLoS Med. 2023-6

本文引用的文献

[1]
Preparation and immunological activity evaluation of an intranasal protein subunit vaccine against ancestral and mutant SARS-CoV-2 with curdlan sulfate/O-linked quaternized chitosan nanoparticles as carrier and adjuvant.

Int J Biol Macromol. 2024-9

[2]
Immunological imprinting shapes the specificity of human antibody responses against SARS-CoV-2 variants.

Immunity. 2024-4-9

[3]
Inhaled SARS-CoV-2 vaccine for single-dose dry powder aerosol immunization.

Nature. 2023-12

[4]
Glycosylated Delta-receptor-binding domain mucosal vaccine elicits broadly neutralizing antibodies with protection against SARS-CoV-2 challenge.

iScience. 2023-9-27

[5]
Vaccine adjuvants: mechanisms and platforms.

Signal Transduct Target Ther. 2023-7-19

[6]
Cationic crosslinked carbon dots-adjuvanted intranasal vaccine induces protective immunity against Omicron-included SARS-CoV-2 variants.

Nat Commun. 2023-5-9

[7]
Mucosal vaccines for SARS-CoV-2: triumph of hope over experience.

EBioMedicine. 2023-6

[8]
New-age vaccine adjuvants, their development, and future perspective.

Front Immunol. 2023

[9]
Imprinted antibody responses against SARS-CoV-2 Omicron sublineages.

Science. 2022-11-11

[10]
Intranasal vaccination with lipid-conjugated immunogens promotes antigen transmucosal uptake to drive mucosal and systemic immunity.

Sci Transl Med. 2022-7-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索