文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

鼻腔内接种脂质偶联免疫原可促进抗原经黏膜摄取,从而诱导黏膜和系统免疫。

Intranasal vaccination with lipid-conjugated immunogens promotes antigen transmucosal uptake to drive mucosal and systemic immunity.

机构信息

Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA.

出版信息

Sci Transl Med. 2022 Jul 20;14(654):eabn1413. doi: 10.1126/scitranslmed.abn1413.


DOI:10.1126/scitranslmed.abn1413
PMID:35857825
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9835395/
Abstract

To combat the HIV epidemic and emerging threats such as SARS-CoV-2, immunization strategies are needed that elicit protection at mucosal portals of pathogen entry. Immunization directly through airway surfaces is effective in driving mucosal immunity, but poor vaccine uptake across the mucus and epithelial lining is a limitation. The major blood protein albumin is constitutively transcytosed bidirectionally across the airway epithelium through interactions with neonatal Fc receptors (FcRn). Exploiting this biology, here, we demonstrate a strategy of "albumin hitchhiking" to promote mucosal immunity using an intranasal vaccine consisting of protein immunogens modified with an amphiphilic albumin-binding polymer-lipid tail, forming amph-proteins. Amph-proteins persisted in the nasal mucosa of mice and nonhuman primates and exhibited increased uptake into the tissue in an FcRn-dependent manner, leading to enhanced germinal center responses in nasal-associated lymphoid tissue. Intranasal immunization with amph-conjugated HIV Env gp120 or SARS-CoV-2 receptor binding domain (RBD) proteins elicited 100- to 1000-fold higher antigen-specific IgG and IgA titers in the serum, upper and lower respiratory mucosa, and distal genitourinary mucosae of mice compared to unmodified protein. Amph-RBD immunization induced high titers of SARS-CoV-2-neutralizing antibodies in serum, nasal washes, and bronchoalveolar lavage. Furthermore, intranasal amph-protein immunization in rhesus macaques elicited 10-fold higher antigen-specific IgG and IgA responses in the serum and nasal mucosa compared to unmodified protein, supporting the translational potential of this approach. These results suggest that using amph-protein vaccines to deliver antigen across mucosal epithelia is a promising strategy to promote mucosal immunity against HIV, SARS-CoV-2, and other infectious diseases.

摘要

为了应对 HIV 疫情和 SARS-CoV-2 等新出现的威胁,我们需要制定免疫策略,以在病原体进入的黏膜门户处产生保护作用。直接通过气道表面进行免疫接种可有效地驱动黏膜免疫,但穿过黏液和上皮衬里的疫苗摄取不良是一个限制。主要的血液蛋白白蛋白通过与新生 Fc 受体(FcRn)的相互作用,双向构成性地穿过气道上皮细胞被转导。利用这种生物学特性,我们在这里展示了一种“白蛋白搭便车”策略,该策略使用一种鼻腔内疫苗来促进黏膜免疫,该疫苗由用两性亲和聚合物-脂质尾巴修饰的蛋白免疫原组成,形成两性蛋白(amph-proteins)。两性蛋白在小鼠和非人类灵长类动物的鼻黏膜中持续存在,并以 FcRn 依赖的方式增加组织摄取,从而导致鼻相关淋巴组织中的生发中心反应增强。鼻腔内免疫接种与两性-conjugated HIV Env gp120 或 SARS-CoV-2 受体结合域(RBD)蛋白,与未修饰的蛋白相比,可使血清、上呼吸道和下呼吸道黏膜以及远位生殖泌尿道黏膜中的抗原特异性 IgG 和 IgA 滴度分别提高 100 至 1000 倍。两性-RBD 免疫接种可诱导出高滴度的针对 SARS-CoV-2 的中和抗体,存在于血清、鼻腔冲洗液和支气管肺泡灌洗液中。此外,恒河猴的鼻腔内两性蛋白免疫接种可使血清和鼻黏膜中的抗原特异性 IgG 和 IgA 反应分别提高 10 倍,与未修饰的蛋白相比,这支持了该方法的转化潜力。这些结果表明,使用两性蛋白疫苗在黏膜上皮细胞中传递抗原是一种很有前途的策略,可以促进针对 HIV、SARS-CoV-2 和其他传染病的黏膜免疫。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0027/9835395/b79f5784795d/nihms-1853909-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0027/9835395/e498c8b1eb57/nihms-1853909-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0027/9835395/45a628d8fab9/nihms-1853909-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0027/9835395/4af3ee5f7cae/nihms-1853909-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0027/9835395/94f840d965d9/nihms-1853909-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0027/9835395/c3b1937ee353/nihms-1853909-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0027/9835395/b79f5784795d/nihms-1853909-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0027/9835395/e498c8b1eb57/nihms-1853909-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0027/9835395/45a628d8fab9/nihms-1853909-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0027/9835395/4af3ee5f7cae/nihms-1853909-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0027/9835395/94f840d965d9/nihms-1853909-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0027/9835395/c3b1937ee353/nihms-1853909-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0027/9835395/b79f5784795d/nihms-1853909-f0006.jpg

相似文献

[1]
Intranasal vaccination with lipid-conjugated immunogens promotes antigen transmucosal uptake to drive mucosal and systemic immunity.

Sci Transl Med. 2022-7-20

[2]
Intranasal administration of unadjuvanted SARS-CoV-2 spike antigen boosts antigen-specific immune responses induced by parenteral protein subunit vaccine prime in mice and hamsters.

Eur J Immunol. 2024-6

[3]
Mucosal SARS-CoV-2 S1 adenovirus-based vaccine elicits robust systemic and mucosal immunity and protects against disease in animals.

mBio. 2025-1-8

[4]
Intranasal immunization with the recombinant measles virus encoding the spike protein of SARS-CoV-2 confers protective immunity against COVID-19 in hamsters.

Vaccine. 2024-1-12

[5]
Intranasal administration of adenoviral vaccines expressing SARS-CoV-2 spike protein improves vaccine immunity in mouse models.

Vaccine. 2023-5-11

[6]
Nasal prevention of SARS-CoV-2 infection by intranasal influenza-based boost vaccination in mouse models.

EBioMedicine. 2022-1

[7]
Thymic stromal lymphopoietin improves protective immunity of the SARS-CoV-2 subunit vaccine by inducing dendritic cell-dependent germinal center response.

J Virol. 2025-4-15

[8]
Comprehensive analysis of nasal IgA antibodies induced by intranasal administration of the SARS-CoV-2 spike protein.

Elife. 2025-5-8

[9]
Intranasal HD-Ad-FS vaccine induces systemic and airway mucosal immunities against SARS-CoV-2 and systemic immunity against SARS-CoV-2 variants in mice and hamsters.

Front Immunol. 2024-8-30

[10]
Mucosal vaccination against SARS-CoV-2 using recombinant influenza viruses delivering self-assembling nanoparticles.

Vaccine. 2025-2-6

引用本文的文献

[1]
Mucosal immunity and vaccination strategies: current insights and future perspectives.

Mol Biomed. 2025-8-20

[2]
A Poly-Lysine-Based RBD Mucosal Vaccine Induces Potent Antibody Responses in Mice.

Vaccines (Basel). 2025-5-29

[3]
Self-assembling TLR2 agonists promote mucosal immune responses without pulmonary immunopathologic injuries in mice.

NPJ Vaccines. 2025-6-18

[4]
The conformational epitope of a gp41-specific mucosal protective IgA binds to the HIV-1 envelope and neutralizes infection.

Acta Pharmacol Sin. 2025-6-5

[5]
An intranasal subunit vaccine induces protective systemic and mucosal antibody immunity against respiratory viruses in mouse models.

Nat Commun. 2025-5-1

[6]
Role of Gut Microbiota in Long COVID: Impact on Immune Function and Organ System Health.

Arch Microbiol Immunol. 2025

[7]
Novel vaccine strategies to induce respiratory mucosal immunity: advances and implications.

MedComm (2020). 2025-1-16

[8]
Synthetic Lipid Biology.

Chem Rev. 2025-2-26

[9]
Mucosal immune response in biology, disease prevention and treatment.

Signal Transduct Target Ther. 2025-1-8

[10]
Modulation of antigen delivery and lymph node activation in nonhuman primates by saponin adjuvant saponin/monophosphoryl lipid A nanoparticle.

PNAS Nexus. 2024-11-25

本文引用的文献

[1]
A particulate saponin/TLR agonist vaccine adjuvant alters lymph flow and modulates adaptive immunity.

Sci Immunol. 2021-12-3

[2]
Prevention of host-to-host transmission by SARS-CoV-2 vaccines.

Lancet Infect Dis. 2022-2

[3]
Engineered SARS-CoV-2 receptor binding domain improves manufacturability in yeast and immunogenicity in mice.

Proc Natl Acad Sci U S A. 2021-9-21

[4]
Scent of a vaccine.

Science. 2021-7-23

[5]
Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine.

N Engl J Med. 2021-9-23

[6]
Exploiting albumin as a mucosal vaccine chaperone for robust generation of lung-resident memory T cells.

Sci Immunol. 2021-3-19

[7]
Reports of Anaphylaxis After Receipt of mRNA COVID-19 Vaccines in the US-December 14, 2020-January 18, 2021.

JAMA. 2021-3-16

[8]
Maintaining Safety with SARS-CoV-2 Vaccines.

N Engl J Med. 2021-2-18

[9]
A guide to vaccinology: from basic principles to new developments.

Nat Rev Immunol. 2021-2

[10]
Viral targets for vaccines against COVID-19.

Nat Rev Immunol. 2021-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索