Sodimanage Chathuri I, Schneider Marc
Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, D-66123 Saarbrücken, Germany.
PharmaScienceHub (PSH), Campus A2 3, D-66123 Saarbrücken, Germany.
Pharmaceutics. 2025 Jun 9;17(6):760. doi: 10.3390/pharmaceutics17060760.
The latest advancements in nanomedicine have led to increased therapeutic efficacy and reduced complications. However, nanoparticle penetration is significantly influenced by biological hydrogels, such as mucus, the extracellular matrix, biofilms, and nucleoporins. Solely modifying well-studied physicochemical properties like size, charge, and surface chemistry is insufficient to fully elucidate or overcome these barriers. Recent studies have investigated the impact of particle elasticity, a relatively unexplored yet crucial physicochemical property influencing many biological processes. Hence, it is important to explore the impact of particle elasticity on penetrating biological hydrogels. This review examines biological hydrogels' structural and functional features as diffusion barriers, provides an overview of particle elasticity, key elasticity measurement techniques, and explores strategies for elasticity modulation in nanoparticles, such as composition, crosslinking density, and structural design. Furthermore, nanoparticle penetration mechanisms, influenced by particle deformability, hydrogel mesh size, and adhesive interactions, are investigated by integrating theoretical and experimental findings. The evaluation of experimental data reveals the commonly observed particle elasticity trends in mucus penetration, extracellular matrix permeation, and corneal penetration of nanoparticles. Overall, this review offers valuable insights into designing next-generation nanomedicines capable of overcoming biological barriers.
纳米医学的最新进展提高了治疗效果并减少了并发症。然而,纳米颗粒的渗透受到生物水凝胶的显著影响,如黏液、细胞外基质、生物膜和核孔蛋白。仅仅改变诸如尺寸、电荷和表面化学等经过充分研究的物理化学性质,不足以充分阐明或克服这些障碍。最近的研究探讨了颗粒弹性的影响,这是一种相对未被探索但对许多生物过程至关重要的物理化学性质。因此,探索颗粒弹性对穿透生物水凝胶的影响很重要。本综述研究了作为扩散屏障的生物水凝胶的结构和功能特征,概述了颗粒弹性、关键弹性测量技术,并探索了纳米颗粒弹性调节策略,如组成、交联密度和结构设计。此外,通过整合理论和实验结果,研究了受颗粒可变形性、水凝胶网格大小和黏附相互作用影响的纳米颗粒渗透机制。对实验数据的评估揭示了纳米颗粒在黏液渗透、细胞外基质渗透和角膜渗透中普遍观察到的颗粒弹性趋势。总体而言,本综述为设计能够克服生物屏障的下一代纳米药物提供了有价值的见解。
Pharmaceutics. 2025-6-9
J Health Organ Manag. 2025-6-30
Neural Regen Res. 2025-6-19
Cochrane Database Syst Rev. 2022-8-5
Cochrane Database Syst Rev. 2021-4-19
Cochrane Database Syst Rev. 2018-2-6
Cochrane Database Syst Rev. 2016-10-13
Mater Today Bio. 2025-1-31
ACS Nano. 2025-3-11
Int J Pharm. 2024-12-5
Adv Drug Deliv Rev. 2024-10
Adv Drug Deliv Rev. 2024-8
Nat Commun. 2024-5-7
J Hazard Mater. 2024-4-15
Front Cell Infect Microbiol. 2024
Beilstein J Nanotechnol. 2023-11-23