Wei Juexian, Zhong Aijia, Zhang Yuting, Deng Ehua, Mo Hengzong, Zhao Hongyu, Huang Jiayu, Peng Huaidong, Zhang Kaiyin, Chen Xiaohui, Mao Haifeng, Chen Yixin, Zhu Yongcheng
Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.
School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
Pharmaceutics. 2025 Jun 10;17(6):766. doi: 10.3390/pharmaceutics17060766.
: This study aims to develop and evaluate neutrophil-membrane-coated nanoparticles (Siv@NMs) encapsulating sivelestat for the treatment of sepsis-induced endothelial injury. Leveraging the intrinsic chemotactic properties of neutrophil membranes, Siv@NMs are engineered to achieve site-specific delivery of sivelestat to damaged endothelia, thereby overcoming the limitations of conventional therapies in mitigating endothelial dysfunction and multiorgan failure associated with sepsis. : Siv@NMs were synthesized through a combination of ultrasonication and extrusion techniques to encapsulate sivelestat within neutrophil-membrane-derived vesicles. Comprehensive physicochemical characterization included analysis of particle size distribution, zeta potential, and encapsulation efficiency. Stability profiles and controlled release kinetics were systematically evaluated under simulated conditions. In vitro investigations encompassed (1) endothelial cell biocompatibility assessment via cytotoxicity assays, (2) investigation of the targeting efficiency in suppressing endothelial neutrophil extracellular trap generation during inflammation, and (3) ROS-scavenging capacity quantification using flow cytometry with DCFH-DA fluorescent probes. In vivo therapeutic efficacy was validated using a cecal ligation and puncture (CLP) sepsis mouse model, with multiparametric monitoring of endothelial function, inflammatory markers, ROS levels, and survival outcomes. : The optimized Siv@NMs exhibited an average particle size of approximately 150 nm, and a zeta potential of -10 mV was achieved. Cellular studies revealed that (1) Siv@NMs selectively bound to inflammatory endothelial cells with minimal cytotoxicity, and (2) Siv@NMs significantly reduced ROS accumulation in endothelial cells subjected to septic stimuli. In vitro experiments demonstrated that Siv@NMs treatment markedly attenuated endothelial injury biomarkers' expression (ICAM-1 and iNOS), suppressed formation of neutrophil extracellular traps, and improved survival rates compared to treatment with free sivelestat. : The neutrophil-membrane-coated nanoparticles loaded with sivelestat present a breakthrough strategy for precision therapy of sepsis-associated endothelial injury. This bioengineered system synergistically combines targeted drug delivery with multimodal therapeutic effects, including ROS mitigation, anti-inflammatory action, and endothelial protection. These findings substantiate the clinical translation potential of Siv@NMs as a next-generation nanotherapeutic for sepsis management.
本研究旨在开发并评估包裹西维来司他的中性粒细胞膜包被纳米颗粒(Siv@NMs)用于治疗脓毒症诱导的内皮损伤。利用中性粒细胞膜的固有趋化特性,设计Siv@NMs以实现西维来司他向受损内皮的位点特异性递送,从而克服传统疗法在减轻与脓毒症相关的内皮功能障碍和多器官衰竭方面的局限性。:通过超声处理和挤压技术相结合合成Siv@NMs,将西维来司他包裹在中性粒细胞膜衍生的囊泡内。全面的物理化学表征包括粒径分布、zeta电位和包封率分析。在模拟条件下系统评估稳定性概况和控释动力学。体外研究包括:(1)通过细胞毒性试验评估内皮细胞生物相容性;(2)研究在炎症过程中抑制内皮中性粒细胞胞外陷阱生成的靶向效率;(3)使用DCFH-DA荧光探针通过流式细胞术定量ROS清除能力。使用盲肠结扎和穿刺(CLP)脓毒症小鼠模型验证体内治疗效果,对内皮功能、炎症标志物、ROS水平和生存结果进行多参数监测。:优化后的Siv@NMs平均粒径约为150 nm,zeta电位为-10 mV。细胞研究表明:(1)Siv@NMs以最小的细胞毒性选择性结合炎症内皮细胞;(2)Siv@NMs显著减少受脓毒症刺激的内皮细胞中的ROS积累。体外实验表明,与游离西维来司他治疗相比,Siv@NMs治疗显著减弱内皮损伤生物标志物(ICAM-1和iNOS)的表达,抑制中性粒细胞胞外陷阱的形成,并提高生存率。:负载西维来司他的中性粒细胞膜包被纳米颗粒为脓毒症相关内皮损伤的精准治疗提供了一种突破性策略。这种生物工程系统将靶向药物递送与多模式治疗效果协同结合,包括减轻ROS、抗炎作用和内皮保护。这些发现证实了Siv@NMs作为脓毒症管理的下一代纳米治疗药物的临床转化潜力。
Cochrane Database Syst Rev. 2018-2-6
Cochrane Database Syst Rev. 2011-7-6
Cochrane Database Syst Rev. 2007-1-24
Health Technol Assess. 2006-9
Cochrane Database Syst Rev. 2007-1-24
Fundam Clin Pharmacol. 2025-4
Arch Biochem Biophys. 2025-3
Intensive Care Med. 2024-10
J Control Release. 2024-5