Aiman Sadaf, Choi Soonyoung, Lee Hyosun, Lee Sang-Ho, Seo Eunyong
Center for Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea.
Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan.
Polymers (Basel). 2025 Jun 15;17(12):1662. doi: 10.3390/polym17121662.
Precise control over molecular dispersity and supramolecular assembly is essential for designing nanostructures with targeted properties and functionalities. In this study, we explore the impact of molecular dispersity in BTA-oligo(AA) oligomers on the formation and structural organization of Au nanomaterials in an aqueous system. Discrete and polydisperse BTA-oligo(AA) samples are systematically synthesized and characterized to evaluate their role as templates for nanostructure formation. UV-vis spectroscopy and TEM analyses reveal distinct differences in the resulting nanostructures. Specifically, discrete oligomers facilitate the formation of well-defined, interconnected Au nanonetworks with high structural uniformity, even at elevated concentrations. In contrast, polydisperse oligomers facilitated the formation of isolated Au nanoparticles with limited control over morphology and connectivity. These differences are attributed to the greater molecular uniformity and enhanced self-assembly capabilities of the discrete oligomers, which serve as effective templates for directing Au precursor organization and reduction into ordered nanostructures. This study provides mechanistic insight into how molecular dispersity affects the templating and assembly of gold nanomaterials. The findings offer a promising strategy for developing tailored nanostructures with interconnected morphologies and controlled optical and structural properties, paving the way for advanced applications.
对分子分散性和超分子组装进行精确控制对于设计具有目标特性和功能的纳米结构至关重要。在本研究中,我们探究了BTA-寡聚(AA)低聚物中的分子分散性对水体系中Au纳米材料形成和结构组织的影响。系统合成并表征了离散和多分散的BTA-寡聚(AA)样品,以评估它们作为纳米结构形成模板的作用。紫外-可见光谱和透射电子显微镜分析揭示了所得纳米结构的明显差异。具体而言,即使在高浓度下,离散低聚物也有助于形成具有高度结构均匀性的明确、相互连接的Au纳米网络。相比之下,多分散低聚物促进了孤立Au纳米颗粒的形成,对形态和连通性的控制有限。这些差异归因于离散低聚物具有更高的分子均匀性和更强的自组装能力,它们作为有效的模板,指导Au前驱体的组织并还原为有序的纳米结构。本研究提供了关于分子分散性如何影响金纳米材料的模板化和组装的机理见解。这些发现为开发具有相互连接形态以及可控光学和结构特性的定制纳米结构提供了一种有前景的策略,为先进应用铺平了道路。