Verma Sangeeta, Lal Sukhbir, Narang Rakesh, Mujwar Somdutt, Hooda Tanuj
Institute of Pharmaceutical Sciences, Kurukshetra University, KurukshetraHaryana, 136119, India.
Department of Pharmaceutical Sciences, Gurugram University, Gurugram Haryana, 122003, India.
Curr Med Chem. 2025 Jun 25. doi: 10.2174/0109298673370267250607160438.
Staphylococcus aureus infections have become a significant public health issue due to increasing the resistance against known antibiotics, especially by Methicillin-Resistant Staphylococcus aureus (MRSA). Fluoroquinolones are broad- -spectrum class of antibiotics mostly utilized in treating various bacterial infections and those caused by S. aureus. Reported data indicated that mutations of Ser84 to Leu, Ser85 to Pro and Glu88 to Lys in DNA gyrase A enzyme are the major cause of fluoroquinolone resistance against S. aureus. Therefore, the development of a novel targeted molecule with potential activity against mutant S. aureus is essential. The antibacterial activity of quinoline-clubbed hydrazone derivatives against S. aureus is noteworthy. However, the mechanism of action of quinoline hydrazone derivatives has not been reported by inhibiting these common mutations of DNA gyrase A.
In this concern, some quinoline hydrazone derivatives as antibacterial agents reported by several research groups have been further studied as mutated S. aureus DNA gyrase A (Pdb id: 8bp2) inhibitors using in-silico techniques viz., molecular docking, MD simulation, DFT analysis, and ADMET predictions.
Among the studied compounds, 48 and 49 were found to be the most active and showed the highest docking score (-9.29 kcalmol-1 and -8.47 kcalmol-1, respectively) by interaction with mutant (Leu84 and Pro85) of S. aureus DNA gyrase A. Further, MD simulation results indicated that both compounds exhibited good stability with the targeted macromolecule under dynamic conditions. The most active compound 49 (ʌE = 0.159 eV) attributed to its lower HOMO-LUMO gap, which was an indicator of a potential inhibitor of fluoroquinolone- resistant S. aureus DNA gyrase A enzyme. ADMET prediction study emphasized that both compounds showed a significant safety profile.
The future perspective emphasized that compounds 48 and 49 could be developed as novel inhibitors against fluoroquinolone-resistant DNA gyrase A enzyme on the completion of drug discovery approaches.
由于对已知抗生素的耐药性增加,尤其是耐甲氧西林金黄色葡萄球菌(MRSA),金黄色葡萄球菌感染已成为一个重大的公共卫生问题。氟喹诺酮类是一类广谱抗生素,主要用于治疗各种细菌感染以及由金黄色葡萄球菌引起的感染。报告数据表明,DNA 回旋酶 A 酶中 Ser84 突变为 Leu、Ser85 突变为 Pro 和 Glu88 突变为 Lys 是金黄色葡萄球菌对氟喹诺酮耐药的主要原因。因此,开发一种对突变型金黄色葡萄球菌具有潜在活性的新型靶向分子至关重要。喹啉腙衍生物对金黄色葡萄球菌的抗菌活性值得关注。然而,尚未有通过抑制 DNA 回旋酶 A 的这些常见突变来报道喹啉腙衍生物的作用机制。
在这方面,几个研究小组报道的一些作为抗菌剂的喹啉腙衍生物已使用计算机技术,即分子对接、分子动力学模拟、密度泛函理论分析和药物代谢及毒性预测,进一步作为突变型金黄色葡萄球菌 DNA 回旋酶 A(Pdb 编号:8bp2)抑制剂进行研究。
在所研究的化合物中,发现 48 和 49 活性最高,通过与金黄色葡萄球菌 DNA 回旋酶 A 的突变体(Leu84 和 Pro85)相互作用,显示出最高的对接分数(分别为 -9.29 kcal/mol-1 和 -8.47 kcal/mol-1)。此外,分子动力学模拟结果表明,这两种化合物在动态条件下与目标大分子均表现出良好的稳定性。活性最高的化合物 49(ʌE = 0.159 eV)因其较低的最高占据分子轨道 - 最低未占据分子轨道能隙,这是耐氟喹诺酮金黄色葡萄球菌 DNA 回旋酶 A 酶潜在抑制剂的一个指标。药物代谢及毒性预测研究强调这两种化合物均显示出显著的安全性。
未来展望强调,在完成药物研发方法后,化合物 48 和 49 可开发为针对耐氟喹诺酮 DNA 回旋酶 A 酶的新型抑制剂。