Suppr超能文献

胰腺癌中的代谢重编程与预后模型构建:来自加权基因共表达网络分析的见解

Metabolic reprogramming and prognostic modeling in pancreatic cancer: insights from WGCNA.

作者信息

Song Zhuo, Sun Zhijia, Di Yupeng, Liu Xu, Kang Xiaoli, Ren Gang, Wang Yingjie

机构信息

Department of Radiotherapy, Air Force Medical Center, Air Force Medical University, Beijing, China.

Department of Radiotherapy, Peking University Shougang Hospital, Beijing, China.

出版信息

Front Genet. 2025 Jun 12;16:1487046. doi: 10.3389/fgene.2025.1487046. eCollection 2025.

Abstract

PURPOSE

Metabolic reprogramming plays a crucial role in multiple malignant features of pancreatic cancer (PC). However, few studies have comprehensively examined metabolic features of PC and provided guidance for their treatment.

METHODS

This study tried to identify metabolism-associated hub genes based on metabolic phenotypic levels through weighted gene co-expression network analysis, and constructed a risk model for PC, then verified its accuracy and explored the potential mechanisms.

RESULTS

We screened out five metabolic hub and prognostic genes (, and ) and constructed a novel metabolism-associated gene signature to predict the prognosis of PC. The model was verified efficacy and demonstrated with good performance through analysis of Kaplan-Meier plotter, receiver operating characteristic curves, comparing with reported models, application in predicting drug sensitivity and constructing a nomogram model. Correlation analysis revealed a close association between the levels of risk score and DNA damage response (DDR, correlation coefficient: 0.41, < 0.001). Enrichment analysis indicated that risk scores were derived from multiple metabolic or proliferative pathways, providing further evidence that metabolism may mediate DDR to affect PC survival.

CONCLUSION

Through bioinformatics analysis, we identified five prognostic relevant differentially expressed genes highlighting the role of metabolism-associated factors in pancreatic cancer, which reveals a strong correlation ship with DDR, offering new insights into treatment strategies that combine metabolism with DDR.

摘要

目的

代谢重编程在胰腺癌(PC)的多种恶性特征中起着关键作用。然而,很少有研究全面研究PC的代谢特征并为其治疗提供指导。

方法

本研究试图通过加权基因共表达网络分析,基于代谢表型水平识别与代谢相关的枢纽基因,并构建PC的风险模型,然后验证其准确性并探索潜在机制。

结果

我们筛选出五个代谢枢纽和预后基因(、和),并构建了一种新的与代谢相关的基因特征来预测PC的预后。通过Kaplan-Meier绘图仪分析、受试者工作特征曲线分析、与已报道模型比较、预测药物敏感性应用以及构建列线图模型,验证了该模型的有效性并证明其具有良好的性能。相关性分析显示风险评分水平与DNA损伤反应(DDR,相关系数:0.41,<0.001)之间存在密切关联。富集分析表明风险评分来自多种代谢或增殖途径,进一步证明代谢可能介导DDR影响PC的生存。

结论

通过生物信息学分析,我们鉴定出五个与预后相关的差异表达基因,突出了代谢相关因素在胰腺癌中的作用,揭示了与DDR的强相关性,为将代谢与DDR相结合的治疗策略提供了新见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb0f/12198206/4a68788f8788/fgene-16-1487046-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验