Lian Sitian, Mai Bo, Cai Zhijun, Yue Yunfan, Zeng Zhongle, Yu Kesong, Wang Xuewen, Mai Liqiang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.
Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, P. R. China.
Small. 2025 Aug;21(34):e2505751. doi: 10.1002/smll.202505751. Epub 2025 Jun 27.
Aqueous zinc-ion batteries are a promising option for grid-scale energy storage owing to their cost-effectiveness and safety. The Zn metal anode with large gravimetric capacity and moderate redox potential can enable high-energy-density Zn batteries. However, the surface instability of commercial Zn metal foils leads to capacity degradation and limited cycle life of batteries. Here, a sacrificial layer strategy is proposed to address these issues by femtosecond laser-induced nanostructuring on the Zn metal substrate (Fs-Zn). This sacrificial layer features an orderly interface consisting of exposed aligned crystal edges after the initial stripping process. This structure induces nearly (101)-oriented epitaxial growth and offers more active sites during the Zn plating/stripping process, effectively minimizing dendrite growth and side reactions. Accordingly, compared with commercial Zn metal, the Fs-Zn symmetric cell shows prolonged operational life, operating for over 500 h at 1 mA cm/1 mA h cm and 180 h at 0.5 mA cm/1.5 mA h cm. Moreover, the Fs-Zn||MnO full cell exhibits enhanced cycling stability over 500 cycles. This femtosecond laser-induced sacrificial layer strategy offers an effective solution to the practical application of aqueous zinc-ion batteries.
水系锌离子电池因其成本效益和安全性,是电网规模储能的一个有前景的选择。具有高比容量和适中氧化还原电位的锌金属负极可实现高能量密度的锌电池。然而,商用锌金属箔的表面不稳定性导致电池容量下降和循环寿命受限。在此,提出一种牺牲层策略,通过在锌金属基底(Fs-Zn)上进行飞秒激光诱导纳米结构化来解决这些问题。这种牺牲层具有有序界面,在初始剥离过程后由暴露的对齐晶体边缘组成。这种结构诱导近乎(101)取向的外延生长,并在锌电镀/剥离过程中提供更多活性位点,有效减少枝晶生长和副反应。因此,与商用锌金属相比,Fs-Zn对称电池显示出延长的使用寿命,在1 mA cm/1 mA h cm下运行超过500小时,在0.5 mA cm/1.5 mA h cm下运行180小时。此外,Fs-Zn||MnO全电池在500次循环中表现出增强的循环稳定性。这种飞秒激光诱导的牺牲层策略为水系锌离子电池的实际应用提供了一种有效解决方案。