Lin Tai-Han, Jian Ming-Jr, Mitsumoto-Kaseida Fujiko, Kaku Norihito, Chung Hsing-Yi, Chang Chih-Kai, Perng Cherng-Lih, Wang Yung-Chih, Wang Chih-Chien, Chen Yuan-Hao, Yanagihara Katsunori, Shang Hung-Sheng
Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC.
Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
Emerg Microbes Infect. 2025 Dec;14(1):2525264. doi: 10.1080/22221751.2025.2525264. Epub 2025 Jul 17.
Methicillin-resistant (MRSA) is a major public health concern because of its genotypic diversity and association with severe infections, particularly those caused by strains carrying Panton-Valentine leukocidin (PVL). This study aimed to develop an artificial intelligence-clinical decision support system (AI-CDSS) to streamline MRSA genotyping and PVL detection, providing a more efficient alternative to complex PCR-based workflows.
We retrospectively analysed 345,748 bacterial specimens collected from five healthcare institutions between 2010 and 2024. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry data were analysed using a hierarchical classification framework enhanced by machine learning models to identify the MRSA status, staphylococcal cassette chromosome mec subtypes, and PVL presence. Area under the curve (AUC), sensitivity, and specificity were used for model evaluation.
AI-CDSS was highly accurate for MRSA genotyping (AUCs > 0.9) and PVL detection (AUC = 0.85). Automating hierarchical classifications effectively replaced labour-intensive PCR processes, reducing diagnostic complexity and resource use.
AI-CDSS is a scalable and efficient method for MRSA genotyping and PVL detection. By streamlining diagnostics and supporting timely clinical interventions, this system can improve infection management and patient care, which will reduce mortality associated with MRSA infections.
耐甲氧西林金黄色葡萄球菌(MRSA)因其基因型多样性以及与严重感染的关联,尤其是由携带杀白细胞素(PVL)的菌株引起的感染,成为一个主要的公共卫生问题。本研究旨在开发一种人工智能临床决策支持系统(AI - CDSS),以简化MRSA基因分型和PVL检测,为基于复杂聚合酶链反应(PCR)的工作流程提供更高效的替代方案。
我们回顾性分析了2010年至2024年间从五家医疗机构收集的345,748份细菌标本。使用机器学习模型增强的分层分类框架分析基质辅助激光解吸/电离飞行时间质谱数据,以确定MRSA状态、葡萄球菌盒式染色体mec亚型和PVL的存在情况。曲线下面积(AUC)、敏感性和特异性用于模型评估。
AI - CDSS在MRSA基因分型(AUCs>0.9)和PVL检测(AUC = 0.85)方面具有高度准确性。自动化分层分类有效地取代了劳动密集型的PCR流程,降低了诊断复杂性和资源使用。
AI - CDSS是一种用于MRSA基因分型和PVL检测的可扩展且高效的方法。通过简化诊断并支持及时的临床干预,该系统可以改善感染管理和患者护理,从而降低与MRSA感染相关的死亡率。