Ben Hamou Aboubakr, Amjlef Asma, Nouj Nisrine, Chaoui Ayoub, Farsad Salaheddine, Morlet-Savary Fabrice, Houari Mustapha, Sanromán Ángeles, Ez-Zahery Mohamed, Jada Amane, El Alem Noureddine
Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco; Institute of Materials Science of Mulhouse (IS2M), Haute Alsace University, Mulhouse, 68100, France; CINTECX, Universidade de Vigo, BIOSUV Group, Department of Chemical Engineering, 36310, Vigo, Spain.
Laboratory of Materials and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
J Environ Manage. 2025 Aug;390:126331. doi: 10.1016/j.jenvman.2025.126331. Epub 2025 Jun 26.
Herein, an innovative methodology aimed at the valorization of sewage sludge through advanced treatment and utilization strategies, thereby fostering a circular economy while attaining both ecological and economic advantages. The research involved a two-step process: an initial Fenton-like chemical pretreatment to enhance sludge biodegradability, followed by anaerobic digestion (AD) to yield methane as an energy source. Subsequently, the iron-rich digestate generated from this process was subjected to pyrolysis, resulting in iron-rich biochar (FBC-600). As a catalyst, FBC-600 accelerated the degradation of Orange G (OG) via persulfate (PS) activation. Under optimized conditions (0.5 g/L FBC-600, 10 mM PS, 50 mg/L OG), 100 % of OG removal was achieved within 60 min. Notably, FBC-600/PS system exhibited remarkable stability and robustness against variations in pH (from 3 to 11), coexisting anions, tap water, and using other common organic pollutants. The FBC-600/PS system exhibited an activation energy of 14.88 kJ/mol and retained 88.9 % OG removal efficiency after five reuse cycles. ensuring consistent performance. Furthermore, mechanistic investigations revealed that the synergistic interaction of oxygen-containing groups (OFGs), iron and nitrogen species, and structural defects synergistically promoted PS activation and enhanced reactive oxygen species (ROS) production. Quenching experiments and electron paramagnetic resonance (EPR) confirmed the predominant role of radical species, particularly O, in the degradation of OG. In the context of the circular economy, the as-developed FBC-600, estimated at $3210 US$/t. Hence, this work highlights a sustainable "waste-to-resource" approach for water treatment, offering both ecological and economic benefits.
在此,一种创新方法旨在通过先进的处理和利用策略实现污水污泥的增值,从而在实现生态和经济优势的同时促进循环经济。该研究涉及一个两步过程:首先进行类芬顿化学预处理以提高污泥的生物降解性,然后进行厌氧消化(AD)以产生甲烷作为能源。随后,将此过程产生的富铁消化物进行热解,得到富铁生物炭(FBC-600)。作为催化剂,FBC-600通过过硫酸盐(PS)活化加速了橙黄G(OG)的降解。在优化条件(0.5 g/L FBC-600、10 mM PS、50 mg/L OG)下,60分钟内OG去除率达到100%。值得注意的是,FBC-600/PS系统在pH值变化(从3到11)、共存阴离子、自来水以及使用其他常见有机污染物的情况下表现出显著的稳定性和稳健性。FBC-600/PS系统的活化能为14.88 kJ/mol,经过五个重复使用周期后仍保留88.9%的OG去除效率,确保了一致的性能。此外,机理研究表明,含氧基团(OFGs)、铁和氮物种以及结构缺陷的协同相互作用协同促进了PS活化并增强了活性氧(ROS)的产生。猝灭实验和电子顺磁共振(EPR)证实了自由基物种,特别是O,在OG降解中的主要作用。在循环经济背景下,所开发的FBC-600估计成本为3210美元/吨。因此,这项工作突出了一种可持续的“变废为宝”水处理方法,兼具生态和经济效益。