Suppr超能文献

在一个城市化工业化地区,使用跨归一化植被指数(NDVI)水平的综合高分辨率数据集评估基于机器学习的颗粒物(PM)估计。

Evaluating machine learning-based PM estimation using integrated high-resolution datasets across NDVI levels in an urban-industrialized region.

作者信息

Elbir Tolga, Tuna Tuygun Gizem, Gündoğdu Serdar, Bilgiç Efem

机构信息

Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Izmir, Türkiye; Environmental Research and Application Center (CEVMER), Dokuz Eylul University, Izmir, Türkiye.

Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Izmir, Türkiye.

出版信息

Environ Pollut. 2025 Oct 1;382:126734. doi: 10.1016/j.envpol.2025.126734. Epub 2025 Jun 25.

Abstract

Air pollution remains a critical public health and environmental challenge in rapidly urbanizing and industrialized regions worldwide. The Marmara Region of Türkiye, including the megacity of Istanbul, exemplifies such complexity due to intense industrial activity, dense population, and diverse land use. This study presents an innovative framework for estimating daily mean PM concentrations in the Marmara Region, where complex emissions and meteorological conditions make accurate prediction vital for effective air quality management. Four advanced machine learning models - Random Forest, Extreme Gradient Boosting, Categorical Boosting, and Light Gradient Boosting Machine (LightGBM) - were employed using a unique combination of high-resolution datasets, including MAIAC Aerosol Optical Depth at a 1-km resolution, ERA5 meteorological reanalysis, EDGARv8.1 emission inventories, Normalized Difference Vegetation Index (NDVI), Corine Land Cover, and Gridded Population of the World demographic data. LightGBM achieved the highest performance (R = 0.88, RMSE = 6.42 μg/m), providing robust predictions across seasons and locations. Analysis based on NDVI revealed that areas with low vegetation had weaker model performance (R = 0.83), while other categories showed consistent performance (R ≈ 0.88-0.89). Notably, RMSE values improved as NDVI increased. Seasonal modeling showed the lowest performance in winter (R = 0.82) and the highest in autumn (R = 0.89). Feature importance analysis identified boundary layer height, solar radiation, and population density as key predictors, highlighting the interplay between atmospheric processes and human activities. Compared to existing studies, our approach, integrating multiple high-resolution datasets, effectively captures PM variability in complex urban environments. This study enhances understanding of PM dynamics in highly urbanized and industrialized regions and offers a scalable framework for high-resolution air quality modeling.

摘要

在全球快速城市化和工业化的地区,空气污染仍然是一项严峻的公共卫生和环境挑战。土耳其的马尔马拉地区,包括伊斯坦布尔这座大城市,由于工业活动密集、人口密集和土地利用多样,体现了这种复杂性。本研究提出了一个创新框架,用于估算马尔马拉地区的每日平均颗粒物浓度,在该地区,复杂的排放和气象条件使得准确预测对于有效的空气质量管理至关重要。使用了四个先进的机器学习模型——随机森林、极端梯度提升、分类提升和轻梯度提升机(LightGBM),采用了高分辨率数据集的独特组合,包括1公里分辨率的MAIAC气溶胶光学厚度、ERA5气象再分析、EDGARv8.1排放清单、归一化植被指数(NDVI)、土地覆盖数据和世界人口网格数据。LightGBM表现最佳(R = 0.88,RMSE = 6.42μg/m),在各个季节和地点都能提供可靠的预测。基于NDVI的分析表明,植被覆盖率低的地区模型性能较弱(R = 0.83),而其他类别表现一致(R≈0.88 - 0.89)。值得注意的是,随着NDVI的增加,RMSE值有所改善。季节性建模显示冬季性能最低(R = 0.82),秋季最高(R = 0.89)。特征重要性分析确定边界层高度、太阳辐射和人口密度为关键预测因子,突出了大气过程与人类活动之间的相互作用。与现有研究相比,我们整合多个高分辨率数据集的方法能够有效捕捉复杂城市环境中颗粒物的变化。本研究增进了对高度城市化和工业化地区颗粒物动态的理解,并为高分辨率空气质量建模提供了一个可扩展的框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验