Zhang Xiyue, Kong Weimin, Shi Rongfen, Sun Long, Xu Min, Gong Ling
Nursing Department, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211100, China.
Endocrinology Department, Yancheng First Hospital Affiliated Hospital of Nanjing University Medical School, Yancheng, 224000, China; Endocrinology Department, Yancheng No 1 People's Hospital, Yancheng, 224000, China.
Comput Biol Med. 2025 Sep;195:110670. doi: 10.1016/j.compbiomed.2025.110670. Epub 2025 Jun 27.
BACKGROUND: The Medical Information Mart for Intensive Care (MIMIC) database has become a cornerstone resource for critical care research, enabling advances in outcome prediction, machine learning, and patient management. However, comprehensive bibliometric understanding of MIMIC-related research evolution, global collaboration, and thematic trends remains limited. OBJECTIVE: This study aimed to perform a comprehensive bibliometric analysis of MIMIC-related publications (2004-2024), identifying thematic evolution, global research trends, and emerging areas, to guide future research directions. METHODS: We conducted a bibliometric analysis of 2769 MIMIC-related publications indexed in the Web of Science Core Collection. Eligible peer-reviewed articles and reviews in English were screened through a dual-blinded process. Bibliometric analyses were performed using multiple software tools: R (v4.4.3) with RStudio (v2024.12.1 + 563) for data cleaning, disambiguation, and visualization; Bibliometrix (v4.3.2) for metadata extraction, descriptive statistics, and science mapping; VOSviewer (v1.6.20) for keyword co-occurrence, clustering, and citation network analyses; and Pajek (v6.01) for large-scale network visualization and layout optimization. A multi-step disambiguation strategy was applied to ensure data consistency in author and institution names. Citation metrics, thematic clustering, temporal keyword trends, and collaboration networks were comprehensively assessed to elucidate research dynamics. RESULTS: Among the 2769 analyzed publications, 2747 (99.2 %) were peer-reviewed original research articles. The average annual publication growth rate was 40.6 %, with an average citation rate of 11.29 per article. Publication trends showed three phases: slow growth (2004-2015), rapid expansion (2016-2020) following updated MIMIC dataset releases, and sustained momentum (2021-2024). Major journals publishing MIMIC research included Scientific Reports, Frontiers in Medicine, Frontiers in Cardiovascular, and others. China was the most productive country with 1998 publications, led by institutions such as Zhejiang University, Jinan University, and Wenzhou Medical University; however, its international collaboration rate was relatively low. In contrast, the United States demonstrated strong global influence, dominating highly cited publications and fostering extensive international collaborations. Thematic clustering and keyword co-occurrence analysis revealed an evolution in MIMIC-based research, transitioning from early descriptive studies to increasingly sophisticated applications of machine learning (ML) and artificial intelligence (AI). Foundational highly cited articles from US institutions highlighted the pivotal role of deep learning models and open-access ICU databases in critical care informatics. CONCLUSIONS: MIMIC-based research has grown substantially, with China and the U.S. leading in output and impact. Studies have evolved from descriptive analyses to advanced AI applications, yet real-world integration remains limited by issues like single-center data and model opacity. Addressing these gaps will require transparent, clinically relevant models and stronger cross-national collaboration. Aligning technical innovation with ethical and practical considerations will enhance the translational value of MIMIC research in critical care.
背景:重症监护医学信息集市(MIMIC)数据库已成为重症监护研究的基石资源,推动了预后预测、机器学习和患者管理方面的进展。然而,对与MIMIC相关的研究演变、全球合作和主题趋势的全面文献计量学理解仍然有限。 目的:本研究旨在对与MIMIC相关的出版物(2004 - 2024年)进行全面的文献计量分析,确定主题演变、全球研究趋势和新兴领域,以指导未来的研究方向。 方法:我们对科学引文索引核心合集中索引的2769篇与MIMIC相关的出版物进行了文献计量分析。符合条件的英文同行评审文章和综述通过双盲过程进行筛选。使用多种软件工具进行文献计量分析:使用R(v4.4.3)和RStudio(v2024.12.1 + 563)进行数据清理、消除歧义以及可视化;使用Bibliometrix(v4.3.2)进行元数据提取、描述性统计和科学映射;使用VOSviewer(v1.6.20)进行关键词共现、聚类和引文网络分析;使用Pajek(v6.01)进行大规模网络可视化和布局优化。应用多步骤消除歧义策略以确保作者和机构名称的数据一致性。综合评估引文指标、主题聚类、时间关键词趋势和合作网络以阐明研究动态。 结果:在分析的2769篇出版物中,2747篇(99.2%)是同行评审的原创研究文章。年平均出版物增长率为40.6%,每篇文章的平均被引率为11.29。出版趋势显示出三个阶段:缓慢增长(2004 - 2015年),在更新MIMIC数据集发布后快速扩张(2016 - 2020年),以及持续增长(2021 - 2024年)。发表MIMIC研究的主要期刊包括《科学报告》《医学前沿》《心血管前沿》等。中国是产出最多的国家,有1998篇出版物,浙江大学、暨南大学和温州医科大学等机构领先;然而,其国际合作率相对较低。相比之下,美国展现出强大的全球影响力,在高被引出版物中占主导地位并促进了广泛的国际合作。主题聚类和关键词共现分析揭示了基于MIMIC的研究的演变,从早期的描述性研究过渡到机器学习(ML)和人工智能(AI)日益复杂的应用。美国机构的基础高被引文章突出了深度学习模型和开放获取重症监护数据库在重症监护信息学中的关键作用。 结论:基于MIMIC的研究有了显著增长,中国和美国在产出和影响力方面领先。研究已从描述性分析发展到先进的AI应用,但实际应用仍受单中心数据和模型不透明等问题限制。解决这些差距需要透明的、临床相关的模型和更强的跨国合作。使技术创新与伦理和实际考虑相一致将提高MIMIC研究在重症监护中的转化价值。
Ann Chir Plast Esthet. 2025-7-2
Brain Behav. 2025-6