Suppr超能文献

非自由基主导的纳米限域铁单原子催化膜增强过一硫酸盐活化用于高效水净化

Nonradical-dominated nanoconfined iron single-atom catalytic membrane to enhance peroxymonosulfate activation for efficient water decontamination.

作者信息

Li Peijie, Xu Daliang, Cheng Xiaoxiang, Liu Peng, Luo Xinsheng, Yang Jiaxuan, Liang Heng

机构信息

State Key Laboratory of Urban-rural Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.

School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China.

出版信息

Water Res. 2025 Oct 1;285:124106. doi: 10.1016/j.watres.2025.124106. Epub 2025 Jun 24.

Abstract

Catalytic membrane reactors (CMRs) exhibit significant advantages in the removal of contaminants of emerging concern. However, the impairment inflicted on polymer membranes by radicals and the radical scavenging induced by natural organic matter constrain the advancement of CMRs. Herein, we designed an iron single-atom catalyst (FePc-O-CNT) dominated by nonradical oxidation mechanisms and combined it with peroxymonosulfate (PMS) to develop a CMR system (FePc-O-CNT membrane/PMS). The system exhibited superior degradation activity to multiple pollutants via nonradical pathways. The nanoconfined membrane space facilitated PMS activation and enhanced singlet oxygen generation and mass transfer, resulting in a 9513-fold enhancement for bisphenol A (BPA) degradation kinetics over the heterogeneous suspensions. Moreover, the system performed robustly in complex water matrices even under severe membrane fouling (60 % or 80 % flux declines). Unlike radical-based processes, the FePc-O-CNT membrane/PMS system maintained excellent permeability, with only a 7.4 % flux loss after 84 h filtration. For engineering validation, the FePc-O-CNT membrane was also fabricated through non-solvent induced phase separation, which achieved ∼100 % BPA removal and minimal iron leaching over 48 h operation. This research introduces a nonradical-dominated CMR system that addresses the limitations of radical-dominated catalytic degradation, providing foundational insights for advanced membrane-based water purification processes.

摘要

催化膜反应器(CMRs)在去除新出现的污染物方面具有显著优势。然而,自由基对聚合物膜造成的损害以及天然有机物诱导的自由基清除作用限制了CMRs的发展。在此,我们设计了一种以非自由基氧化机制为主导的铁单原子催化剂(FePc-O-CNT),并将其与过一硫酸盐(PMS)相结合,开发出一种CMR系统(FePc-O-CNT膜/PMS)。该系统通过非自由基途径对多种污染物表现出优异的降解活性。纳米受限的膜空间促进了PMS的活化,增强了单线态氧的产生和传质,使得双酚A(BPA)降解动力学比非均相悬浮液提高了9513倍。此外,即使在严重的膜污染(通量下降60%或80%)情况下,该系统在复杂水基质中仍表现出色。与基于自由基的过程不同,FePc-O-CNT膜/PMS系统保持了优异的渗透性,过滤84小时后通量损失仅为7.4%。为了进行工程验证,还通过非溶剂诱导相分离制备了FePc-O-CNT膜,在48小时的运行过程中实现了约100%的BPA去除率和最小的铁浸出。本研究引入了一种以非自由基为主导的CMR系统,解决了以自由基为主导的催化降解的局限性,为先进的膜基水净化工艺提供了基础见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验