Kalita Sanmilan Jyoti, Islam Hafijul, Varangane Sagar, Abraham B Moses, Pal Ujjwal, Saikia Lakshi
Materials Sciences Group, Coal, Energy and Materials Sciences Division (CEMSD), CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
Small Methods. 2025 Jun 29:e2500715. doi: 10.1002/smtd.202500715.
Utilization of solar energy through wireless water-splitting technology offers a promising pathway toward a sustainable and environmentally conscious future. The rational design of 2D-2D heterojunctions leverages synergistic effects to optimize charge carrier dynamics, thereby boosting photocatalytic activity. In this study, well-engineered heterojunction TiC/CdInS (TCIS) nanocomposites are synthesized via an in situ hydrothermal method and employed in photocatalytic hydrogen evolution (PHE). The hydrogen evolution rate of 9.799 mmol g h surpasses previously reported MXene-based materials, and is 26 times higher than pristine CdInS, with an AQE of 6.4% under 420 nm light irradiation. Optimizing the electronic structure of active metal sites enhances rapid electron transport and synergistic proton reduction. With insights from DFT and KPFM studies, an efficient charge transfer pathway, with electron accumulation on TiC and depletion on CdInS are revealed. This study highlights the critical role of interfacial engineering in MXenes for accelerating water dissociation and presents a promising strategy for the development of high-performance materials for future energy applications.
通过无线水分解技术利用太阳能为迈向可持续和环保的未来提供了一条有前景的途径。二维-二维异质结的合理设计利用协同效应来优化电荷载流子动力学,从而提高光催化活性。在本研究中,通过原位水热法合成了精心设计的异质结TiC/CdInS(TCIS)纳米复合材料,并将其用于光催化析氢(PHE)。9.799 mmol g h的析氢速率超过了先前报道的基于MXene的材料,比原始CdInS高26倍,在420 nm光照射下的AQE为6.4%。优化活性金属位点的电子结构可增强快速电子传输和协同质子还原。通过密度泛函理论(DFT)和开尔文探针力显微镜(KPFM)研究的见解,揭示了一种有效的电荷转移途径,即电子在TiC上积累而在CdInS上耗尽。本研究突出了界面工程在MXene中加速水分解的关键作用,并为未来能源应用开发高性能材料提出了一种有前景的策略。