Londhe Vaidehi, Maitz Manfred F, Chavakis Triantafyllos, Werner Carsten, Weiss Alessia C G, Besford Quinn A
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069, Dresden, Germany.
Institute for Clinical Chemistry and Laboratory Medicine, University Hospital, Fetscherstr. 74, 01307, Dresden, Germany.
Adv Healthc Mater. 2025 Jun 30:e2501431. doi: 10.1002/adhm.202501431.
Nanoparticles in physiological environments acquire a biomolecular corona that defines their biological identity, mediating immune system recognition and accelerating blood clearance of the nanoparticles. Typically, low-fouling materials are chosen to minimize protein adsorption and thereby immune system responses, contributing to stealth in blood. However, absolute prevention of the biomolecular corona remains tantalizingly out of reach. Herein, it is proposed to leverage the biomolecular corona rather than preventing its formation, in order to overcome immune responses toward nanoparticles. Low-fouling and stealthy poly(ethylene glycol)(PEG) nanoparticles are used, with a functional biomolecular corona enriched with anticoagulant heparin-antithrombin III (HEP-ATIII) complexes that can mitigate undesirable immune responses. Through immune response evaluations and proteomic analyses are used to ascertain the low-fouling, stealthy character of the nanoparticles, similar to that of PEG nanoparticles. However, PEG nanoparticles alone induce coagulation responses in human blood, which are mitigated by pre-enrichment of the biomolecular corona with HEP-ATIII complexes. This shows that coagulation is another factor to be considered in the design of materials for nanomedicine and that the low-fouling and stealthy properties do not directly translate to hemocompatibility. These findings highlight the potential of biomolecular corona engineering to address key challenges in the field, toward developing safer, efficacious therapeutic nanomaterials.
生理环境中的纳米颗粒会形成生物分子冠层,该冠层定义了它们的生物学特性,介导免疫系统识别并加速纳米颗粒的血液清除。通常,会选择低污染材料以尽量减少蛋白质吸附,从而减少免疫系统反应,有助于在血液中实现隐身。然而,完全防止生物分子冠层的形成仍然难以实现。在此,有人提出利用生物分子冠层而非阻止其形成,以克服对纳米颗粒的免疫反应。使用了低污染且具有隐身性的聚乙二醇(PEG)纳米颗粒,其功能性生物分子冠层富含抗凝剂肝素 - 抗凝血酶III(HEP - ATIII)复合物,可减轻不良免疫反应。通过免疫反应评估和蛋白质组学分析来确定纳米颗粒的低污染、隐身特性,类似于PEG纳米颗粒。然而,单独的PEG纳米颗粒会在人血中引发凝血反应,而通过用HEP - ATIII复合物预富集生物分子冠层可减轻这种反应。这表明凝血是纳米医学材料设计中另一个需要考虑的因素,并且低污染和隐身特性并不直接等同于血液相容性。这些发现凸显了生物分子冠层工程在应对该领域关键挑战方面的潜力,朝着开发更安全、有效的治疗性纳米材料迈进。