Suppr超能文献

运用整合生物信息学、网络药理学和分子对接技术探索雷公藤红素抗抑郁作用的潜在机制。

Using integrated bioinformatics, network pharmacology and molecular docking to explore the mechanisms underlying the antidepressant effect of celastrol.

作者信息

Jiang Yong-Li, Wang Xin-Shang, Wang Fei-Yan, Zheng Mei-Ling, Yang Le, Jin Yu-Chen, Gao Ying, Guo Qing-Juan, Song Da-Ke, Luo Li, Liu Shui-Bing

机构信息

Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of pharmacy, The Third Affiliated Hospital of the Fourth Military Medical University, Xi'an, China.

出版信息

J Biomol Struct Dyn. 2025 Jun 30:1-18. doi: 10.1080/07391102.2025.2520568.

Abstract

Celastrol, a natural compound derived from the root of Hook. F., has shown potential efficacy in alleviating depression in animal models, yet its specific target remains unelucidated. The present investigation aimed to identify the principal targets and possible signaling pathways of celastrol in major depressive disorder (MDD). Using a combination of GEO datasets, network pharmacology, molecular docking and molecular dynamics simulation techniques, we conducted an analysis to uncover the underlying mechanism through which celastrol exerts its antidepressant effects. Our analysis identified a total of 1064 drug targets and 3386 disease-related targets, resulting in 209 shared targets. A topological examination of the protein-protein interaction (PPI) network revealed 10 core targets, including STAT3, IL6, ALB, HSP90AA1, HIF1A, CASP3, EGFR, BCL2L1, INS and IGF1. GO and KEGG pathway enrichment analyses demonstrated that celastrol exerted antidepressant effects through regulating genes related to inflammation, apoptosis, oxidative stress and the PI3K/Akt, MAPK, and HIF1 signaling pathways. Furthermore, the results of molecular docking and molecular dynamics simulations revealed the strong binding affinity between celastrol and HIF1A. In conclusion, this study effectively predicted the possible molecular targets and signaling pathways of celastrol in the treatment of depression, providing a promising approach for future investigations into its mechanisms against MDD.

摘要

雷公藤红素是一种从大花卫矛根中提取的天然化合物,已在动物模型中显示出缓解抑郁的潜在功效,但其具体靶点仍未阐明。本研究旨在确定雷公藤红素在重度抑郁症(MDD)中的主要靶点和可能的信号通路。通过结合GEO数据集、网络药理学、分子对接和分子动力学模拟技术,我们进行了分析,以揭示雷公藤红素发挥抗抑郁作用的潜在机制。我们的分析共确定了1064个药物靶点和3386个疾病相关靶点,共有209个共享靶点。对蛋白质-蛋白质相互作用(PPI)网络的拓扑学检查揭示了10个核心靶点,包括STAT3、IL6、ALB、HSP90AA1、HIF1A、CASP3、EGFR、BCL2L1、INS和IGF1。GO和KEGG通路富集分析表明,雷公藤红素通过调节与炎症、凋亡、氧化应激以及PI3K/Akt、MAPK和HIF1信号通路相关的基因发挥抗抑郁作用。此外,分子对接和分子动力学模拟结果揭示了雷公藤红素与HIF1A之间具有很强的结合亲和力。总之,本研究有效地预测了雷公藤红素治疗抑郁症可能的分子靶点和信号通路,为未来深入研究其抗MDD机制提供了一种有前景的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验