Thiesen Adam, Domanskyi Sergii, Foroughi Pour Ali, Zhang Jingyan, Sheridan Todd B, Neuhauser Steven B, Stetson Alyssa, Dannheim Katelyn, Cameron Danielle B, Ahn Shawn, Wu Hao, Christison Lagay Emily R, Bult Carol J, Chuang Jeffrey H, Rubinstein Jill C
The Jackson Laboratory for Genomic Medicine.
UConn School of Medicine.
medRxiv. 2025 Jun 11:2025.06.10.25328700. doi: 10.1101/2025.06.10.25328700.
Pediatric sarcomas present diagnostic challenges due to their rarity and diverse subtypes, often requiring specialized pathology expertise and costly genetic tests. To overcome these barriers, we developed a computational pipeline leveraging deep learning methods to accurately classify pediatric sarcoma subtypes from digitized histology slides. To ensure classifier generalizability and minimize center-specific artifacts, we collected and harmonized a dataset comprising 867 whole slide images (WSIs) from three medical centers and the Children's Oncology Group (COG). Multiple convolutional neural network (CNN) and vision transformer (ViT) architectures were systematically evaluated as feature extractors for SAMPLER-based WSI representations, and input parameters such as tile size combinations and resolutions were tested and optimized. Our analysis showed that advanced ViT foundation models (UNI, CONCH) significantly outperformed earlier approaches, and incorporating multiscale features can enhance classification accuracy. Our optimized models achieved high performance, distinguishing rhabdomyosarcoma (RMS) from non-rhabdomyosarcoma (NRSTS) with an AUC of 0.969±0.026 and differentiating RMS subtypes (alveolar vs. embryonal) with an AUC of 0.961±0.021. Additionally, a two-stage pipeline effectively identified scarce Ewing sarcoma images from other NRSTS (AUC 0.929). Compared to conventional transformer encoder architectures used for WSI representations, our SAMPLER based classifiers were more lightweight (0.111 MB vs. 1.9 MB) and three orders of magnitude faster to train. This study highlights that digital histopathology paired with rigorous image harmonization provides a powerful solution for pediatric sarcoma classification. Our models reduce inter-observer variability, augment diagnostic precision, and have the potential to increase global accessibility to robust diagnostics, improving time to diagnosis and subsequent treatment planning.
儿童肉瘤由于其罕见性和多样的亚型而带来诊断挑战,通常需要专业的病理学专业知识和昂贵的基因检测。为了克服这些障碍,我们开发了一种计算流程,利用深度学习方法从数字化组织学切片中准确分类儿童肉瘤亚型。为了确保分类器的通用性并最小化特定中心的伪影,我们收集并整合了一个数据集,该数据集包含来自三个医疗中心和儿童肿瘤学组(COG)的867张全切片图像(WSIs)。系统评估了多个卷积神经网络(CNN)和视觉Transformer(ViT)架构作为基于SAMPLER的WSI表示的特征提取器,并测试和优化了诸如切片大小组合和分辨率等输入参数。我们的分析表明,先进的ViT基础模型(UNI、CONCH)明显优于早期方法,并且纳入多尺度特征可以提高分类准确性。我们优化后的模型表现出色,区分横纹肌肉瘤(RMS)与非横纹肌肉瘤(NRSTS)的曲线下面积(AUC)为0.969±0.026,区分RMS亚型(肺泡型与胚胎型)的AUC为0.961±0.021。此外,一个两阶段流程有效地从其他NRSTS中识别出罕见的尤因肉瘤图像(AUC为0.929)。与用于WSI表示的传统Transformer编码器架构相比,我们基于SAMPLER的分类器更轻量级(0.111 MB对1.9 MB),训练速度快三个数量级。这项研究强调,数字组织病理学与严格的图像协调相结合为儿童肉瘤分类提供了一个强大的解决方案。我们的模型减少了观察者间的变异性,提高了诊断精度,并有可能增加全球获得强大诊断的机会,改善诊断时间和后续治疗计划。