文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于细胞外囊泡大规模生产的新兴技术。

Emerging technologies towards extracellular vesicles large-scale production.

作者信息

Huang Junjie, Chen Hanxu, Li Ning, Liu Panmiao, Yang Jianjun, Zhao Yuanjin

机构信息

Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.

Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.

出版信息

Bioact Mater. 2025 Jun 13;52:338-365. doi: 10.1016/j.bioactmat.2025.06.005. eCollection 2025 Oct.


DOI:10.1016/j.bioactmat.2025.06.005
PMID:40585384
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12206051/
Abstract

Extracellular vesicles (EVs), which carry bioactive components such as proteins and nucleic acids, reflect the physiological state of their parent cells and play a key role in mediating complex intercellular signaling. Leveraging these unique characteristics, researchers have explored their potential applications in cell therapy, non-invasive biopsies, and tissue regeneration. Therefore, standardized and scalable methods for EVs production and purification are crucial for clinical application and therapeutic settings. However, the limited yields of traditional production and isolation methods have hampered full potential of EVs. In this review, we will introduce strategies aimed at enhancing EV production include optimizing cell yield, expanding cell culture scale, and exploring alternative EVs production sources such as non-mammalian organisms and artificially produced vesicles. Various approaches as well as the bioreactors for controlling cell culture to enhance EVs production, will be introduced in detail. These approaches include regulation of culture parameters, culture medium components, and external stimuli. Additionally, the comparison between traditional ultracentrifugation methods and advance microfluidic isolating methods will be analyzed and discussed. Finally, we will introduce the potential challenges of transitioning EVs from basic research to clinical application and further discuss the future prospects. As the technology advances and different methods are integrated, there is significant potential to enable large-scale EVs production and improve their clinical translation.

摘要

细胞外囊泡(EVs)携带蛋白质和核酸等生物活性成分,反映其母细胞的生理状态,并在介导复杂的细胞间信号传导中发挥关键作用。利用这些独特特性,研究人员探索了它们在细胞治疗、无创活检和组织再生中的潜在应用。因此,标准化且可扩展的EVs生产和纯化方法对于临床应用和治疗环境至关重要。然而,传统生产和分离方法的产量有限,阻碍了EVs的全部潜力。在本综述中,我们将介绍旨在提高EVs产量的策略,包括优化细胞产量、扩大细胞培养规模,以及探索非哺乳动物生物体和人工生产的囊泡等替代EVs生产来源。将详细介绍各种方法以及用于控制细胞培养以提高EVs产量的生物反应器。这些方法包括调节培养参数、培养基成分和外部刺激。此外,还将分析和讨论传统超速离心方法与先进微流体分离方法之间的比较。最后,我们将介绍将EVs从基础研究转化为临床应用的潜在挑战,并进一步讨论未来前景。随着技术的进步和不同方法的整合,实现大规模EVs生产并改善其临床转化具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/64a2e97c4333/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/6f6cee6e4cbb/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/4606e140a108/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/728113e380d5/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/ac1c67eb7056/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/6bb8964693c0/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/9ff9f8adc91b/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/cf9ec4f8f316/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/3b873edca0a1/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/b0b625a0ad8d/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/736b48de85b9/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/23a2183e50e1/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/551c10e38ba8/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/64a2e97c4333/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/6f6cee6e4cbb/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/4606e140a108/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/728113e380d5/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/ac1c67eb7056/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/6bb8964693c0/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/9ff9f8adc91b/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/cf9ec4f8f316/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/3b873edca0a1/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/b0b625a0ad8d/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/736b48de85b9/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/23a2183e50e1/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/551c10e38ba8/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2232/12206051/64a2e97c4333/gr12.jpg

相似文献

[1]
Emerging technologies towards extracellular vesicles large-scale production.

Bioact Mater. 2025-6-13

[2]
Physicochemical Modulation Strategies for Mass Production of Extracellular Vesicle.

Tissue Eng Regen Med. 2025-6-5

[3]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[4]
Brain-derived extracellular vesicles: A promising avenue for Parkinson's disease pathogenesis, diagnosis, and treatment.

Neural Regen Res. 2025-4-29

[5]
Extracellular Vesicle-Integrated Biomaterials in Bone Tissue Engineering Applications: Current Progress and Future Perspectives.

Int J Nanomedicine. 2025-6-17

[6]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2021-4-19

[7]
Unveiling Invisible Extracellular Vesicles: Cutting-Edge Technologies for Their in Vivo Visualization.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024

[8]
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.

Cochrane Database Syst Rev. 2020-1-9

[9]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[10]
Extracellular vesicles as nature's nano carriers in cancer therapy: Insights toward preclinical studies and clinical applications.

Pharmacol Res. 2025-7

引用本文的文献

[1]
Extracellular Vesicles Containing MDP Derived from Lactobacillus rhamnosus GG Inhibit HSV-2 Infection by Activating the NOD2-IFN-I Signalling Pathway.

J Extracell Vesicles. 2025-8

本文引用的文献

[1]
Small Extracellular Vesicles Engineered Using Click Chemistry to Express Chimeric Antigen Receptors Show Enhanced Efficacy in Acute Liver Failure.

J Extracell Vesicles. 2025-2

[2]
Comparison of nanoLC-MALDI-MS/MS with nanoLC-TIMS-MS/MS in the proteomic analysis of extracellular vesicles of bronchoalveolar lavage fluid.

Anal Methods. 2025-2-6

[3]
Extracellular vesicles originating from the mechanical microenvironment in the pathogenesis and applications for cardiovascular diseases.

Regen Ther. 2024-11-8

[4]
High-Yield Bioproduction of Extracellular Vesicles from Stem Cell Spheroids via Millifluidic Vortex Transport.

Adv Mater. 2025-5

[5]
Multimodal AI/ML for discovering novel biomarkers and predicting disease using multi-omics profiles of patients with cardiovascular diseases.

Sci Rep. 2024-11-3

[6]
Harnessing extracellular vesicle heterogeneity for diagnostic and therapeutic applications.

Nat Nanotechnol. 2025-1

[7]
Glutamine and serum starvation alters the ATP production, oxidative stress, and abundance of mitochondrial RNAs in extracellular vesicles produced by cancer cells.

Sci Rep. 2024-10-28

[8]
High-throughput capture and in situ protein analysis of extracellular vesicles by chemical probe-based array.

Nat Protoc. 2025-4

[9]
Phloem sap from melon plants contains extracellular vesicles that carry active proteasomes which increase in response to aphid infestation.

J Extracell Vesicles. 2024-10

[10]
Tumour-derived small extracellular vesicles act as a barrier to therapeutic nanoparticle delivery.

Nat Mater. 2024-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索