Park Hyoeun, Seo Young-Kwon, Arai Yoshie, Lee Soo-Hong
Department of Biomedical Engineering, Dongguk University, Seoul, South Korea.
Tissue Eng Regen Med. 2025 Jun 5. doi: 10.1007/s13770-025-00726-9.
BACKGROUND: Extracellular vesicles (EVs) have attracted expanded attention as vehicles for the diagnosis and therapy of diseases and regenerative medicine due to their biocompatibility, efficient cellular uptake ability, and capacity to transport biologically active molecules. However, the low secretion yield of EVs and the challenges of large-scale production remain the main barriers to their extensive clinical use. METHODS AND RESULTS: This review explores recent strategies to enhance EV production in cell culture systems, focusing on chemical stimulation, mechanical stimulation, and structural stimulation. First, we review chemical stimulation strategies for modulating culture conditions using chemical stimulation, including nutrient composition, pH, temperature, oxygen levels, intracellular cholesterol, and oxidative stress. Second, we examine mechanical stimulation strategies, including shear stress, irradiation, and ultrasound. Third, we explore structural stimulation strategies, such as three-dimensional (3D) culture systems involving spheroid-based culture, as well as the use of bioreactors and scaffolds. In addition, cell-derived nanovesicles containing cell membrane and cellular component, which can be more easily mass-produced compared to EVs, are proposed as an alternative to EVs. CONCLUSION: Future research should focus on developing cost-effective and scalable EV production methods while improving purification techniques to ensure a high yield without compromising functional integrity. Moreover, integrating optimized stimulation strategies-such as refining 3D culture systems, bioreactor designs, and mechanical stimulation methods-could further enhance EV secretion. Addressing these challenges is essential for advancing EV-based applications in both research and clinical practice.
背景:细胞外囊泡(EVs)因其生物相容性、高效的细胞摄取能力以及运输生物活性分子的能力,作为疾病诊断与治疗以及再生医学的载体而受到越来越多的关注。然而,EVs的低分泌产量以及大规模生产面临的挑战仍然是其广泛临床应用的主要障碍。 方法与结果:本综述探讨了在细胞培养系统中提高EVs产量的最新策略,重点关注化学刺激、机械刺激和结构刺激。首先,我们回顾了使用化学刺激调节培养条件的化学刺激策略,包括营养成分、pH值、温度、氧水平、细胞内胆固醇和氧化应激。其次,我们研究了机械刺激策略,包括剪切应力、辐射和超声。第三,我们探索了结构刺激策略,如涉及基于球体培养的三维(3D)培养系统,以及生物反应器和支架的使用。此外,还提出了含有细胞膜和细胞成分的细胞衍生纳米囊泡,与EVs相比,其更容易大规模生产,可作为EVs的替代品。 结论:未来的研究应专注于开发具有成本效益且可扩展的EVs生产方法,同时改进纯化技术,以确保在不影响功能完整性的情况下实现高产率。此外,整合优化的刺激策略,如完善3D培养系统、生物反应器设计和机械刺激方法,可进一步提高EVs的分泌。应对这些挑战对于推动EVs在研究和临床实践中的应用至关重要。
Tissue Eng Regen Med. 2025-6-5
Arch Ital Urol Androl. 2025-6-30
Cochrane Database Syst Rev. 2022-5-20
Cochrane Database Syst Rev. 2016-7-1
Cochrane Database Syst Rev. 2018-2-6
J Psychiatr Ment Health Nurs. 2024-8
Cochrane Database Syst Rev. 2016-10-4
Mater Today Bio. 2025-2-18
Trends Biotechnol. 2024-10