Jia Siyu, Gao Yifan, Gu Mengyao, Tao Weijia, Ding Haojie, Liang Shuai, Huang Xia
Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
ACS Appl Mater Interfaces. 2025 Jul 16;17(28):41176-41186. doi: 10.1021/acsami.5c10351. Epub 2025 Jun 30.
The separation of surfactant-stabilized oil/water emulsions remains a critical challenge due to the inefficiency of conventional methods and the limitations of existing membranes, such as poor wettability, low porosity, and fouling susceptibility. In this study, we propose a novel strategy to fabricate hierarchically structured superhydrophilic and underwater superoleophobic electrospun membranes via postfabrication grafting of polydopamine (PDA) and surface-tailored silica (M-SiO) nanoparticles. This strategy enables the synergistic design of interfacial morphology and surface energy of membranes. At the microscale level, key parameters in the electrospinning process were first optimized to construct polyacrylonitrile (PAN) nanofiber membranes with high permeability and oil retention capability. Then, at the nanoscale level, a high-surface-energy layer was further constructed on the PAN nanofiber network via in situ dopamine polymerization and nanoparticle grafting, ultimately achieving a hierarchical superhydrophilic and underwater superoleophobic interface. The prepared SiO/PDA@PAN membrane exhibited highly efficient oil/water emulsion separation performance and exceptional oil fouling resistance, primarily owing to the synergistic effects of its superhydrophilicity and hierarchical micronano rough structure. Experimental results demonstrated that the membrane achieved a stable permeability of ∼15 L m h kPa and an oil retention rate exceeding 99% when treating oil/water emulsions. Furthermore, the SiO/PDA@PAN membrane maintained an oil retention rate of over 99% even after ten separation cycles, highlighting its remarkable regeneration capability and long-term stability. These findings underscored that the SiO/PDA@PAN membrane holds significant promise for practical applications in the field of oil/water separation, offering a sustainable and effective solution for addressing oil-contaminated wastewater.
由于传统方法效率低下以及现有膜存在诸如润湿性差、孔隙率低和易污染等局限性,表面活性剂稳定的油/水乳液的分离仍然是一项严峻挑战。在本研究中,我们提出了一种新颖的策略,通过聚多巴胺(PDA)的后制备接枝和表面定制的二氧化硅(M-SiO)纳米颗粒来制备具有分级结构的超亲水和水下超疏油的电纺膜。该策略能够实现膜的界面形态和表面能的协同设计。在微观尺度上,首先优化了电纺过程中的关键参数,以构建具有高渗透性和保油能力的聚丙烯腈(PAN)纳米纤维膜。然后,在纳米尺度上,通过原位多巴胺聚合和纳米颗粒接枝在PAN纳米纤维网络上进一步构建高表面能层,最终实现分级的超亲水和水下超疏油界面。制备的SiO/PDA@PAN膜表现出高效的油/水乳液分离性能和出色的抗油污性能,这主要归因于其超亲水性和分级微纳粗糙结构的协同作用。实验结果表明,该膜在处理油/水乳液时实现了约15 L m h kPa的稳定渗透率和超过99%的保油率。此外,SiO/PDA@PAN膜即使在十个分离循环后仍保持超过99%的保油率,突出了其显著的再生能力和长期稳定性。这些发现强调了SiO/PDA@PAN膜在油/水分离领域的实际应用中具有重大潜力,为解决含油废水问题提供了一种可持续且有效的解决方案。