Li Shuhan, Song Siyu, Lv Peng, Wang Shihao, Hong Jiawang, Tang Gang
School of Interdisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.
Beijing Institute of Technology, Zhuhai Beijing Institute of Technology (BIT), Zhuhai 519088, P. R. China.
Phys Chem Chem Phys. 2025 Jul 17;27(28):14948-14956. doi: 10.1039/d5cp00956a.
Recent experiments have synthesized CsAgBiI by partially substituting Cs with Ag at the A-site of CsBiI, resulting in enhanced charge transport properties compared to CsBiI. However, the atomic-scale mechanisms behind this enhancement remain unclear. In this work, we investigate the carrier transport mechanisms in CsA'BiI (A' = Ag, Cu) using first-principles calculations and Boltzmann transport equation. Our results reveal that A-site ordered CsA'BiI exhibits carrier mobilities that are 3-4 times higher than those of CsBiI within the 100-500 K temperature range. We identify polar phonon scattering as the dominant mechanism limiting mobility. Furthermore, the enhanced out-of-plane carrier mobility in CsA'BiI, particularly between 100 and 200 K, leads to reduced mobility anisotropy. These improvements are mainly due to the shorter A'-I bond lengths and increased Ag/Cu s-I p orbital coupling. Notably, substitution with Cu results in a further reduction in the band gap and enhanced hole mobility compared to Ag substitution in CsBiI. Further analysis reveals that the significant increase in carrier mobility in CsA'BiI can be largely explained by the smaller carrier effective masses () and weaker Fröhlich coupling strengths (), resulting in a lower polar mass (/), compared to CsBiI. Our study provides valuable insights into the transport properties of Bi-based perovskite derivatives, paving the way for their future applications in optoelectronic devices.
最近的实验通过在CsBiI的A位用Ag部分替代Cs来合成CsAgBiI,与CsBiI相比,其电荷传输性能得到了增强。然而,这种增强背后的原子尺度机制仍不清楚。在这项工作中,我们使用第一性原理计算和玻尔兹曼输运方程研究了CsA'BiI(A' = Ag、Cu)中的载流子输运机制。我们的结果表明,在100 - 500 K温度范围内,A位有序的CsA'BiI表现出的载流子迁移率比CsBiI高3 - 4倍。我们确定极性声子散射是限制迁移率的主要机制。此外,CsA'BiI中面外载流子迁移率的增强,特别是在100到200 K之间,导致迁移率各向异性降低。这些改进主要归因于较短的A'-I键长和增加的Ag/Cu s-I p轨道耦合。值得注意的是,与在CsBiI中用Ag替代相比,用Cu替代导致带隙进一步减小和空穴迁移率增强。进一步分析表明,与CsBiI相比,CsA'BiI中载流子迁移率的显著增加在很大程度上可以由较小的载流子有效质量()和较弱的弗罗利希耦合强度()来解释,从而导致较低的极性质量(/)。我们的研究为Bi基钙钛矿衍生物的输运性质提供了有价值的见解,为其在光电器件中的未来应用铺平了道路。