Yan Haixian, Wang Shiqi, Huo Wenyi, Abdellatief Mahmoud, Xu Yan, Xiang Xin, Jiang Jianqing, Fang Feng
Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing, 211189, P. R. China.
Department of Chemistry, University of Helsinki, Helsinki FIN, 0014, Finland.
Small. 2025 Aug;21(34):e2505117. doi: 10.1002/smll.202505117. Epub 2025 Jul 1.
Regulating electron transfer between peroxymonosulfate (PMS) and catalysts is a promising strategy to enhance the activity of the catalytic system. This work demonstrates a multi-cation co-doping strategy (Fe,Ni,Cu) to engineer the electronic configuration of δ-MnO, creating a novel nanocatalyst that synergistically couples electron transfer (PMS-ETP) with singlet oxygen (O) generation for efficient pollutant degradation. The optimized catalyst exhibits excellent PMS activation efficiency, achieving a removal rate of >90.6% for diverse refractory contaminants within 10 min while maintaining satisfactory durability and structural stability during catalytic tests. Advanced synchrotron-based X-ray diffraction (SXRD) and density functional theory (DFT) verify that Fe,Ni,Cu co-doping optimized the d-band center of Mn and provides the electron-absorbing sites. The in situ Raman spectroscopy, electrochemical analysis, and quenching tests confirm that the modified electronic structure facilitates bidirectional electron transfer between PMS and the catalyst, enabling broad-spectrum purification capabilities across complex water matrices. This work provides atomic-level insights into the multi-metallic modulation of redox-active catalysts and new ideas for designing energy-efficient oxidation systems toward sustainable water remediation.
调节过一硫酸盐(PMS)与催化剂之间的电子转移是提高催化体系活性的一种很有前景的策略。这项工作展示了一种多阳离子共掺杂策略(铁、镍、铜)来设计δ-MnO的电子构型,从而创造出一种新型纳米催化剂,该催化剂将电子转移(PMS-ETP)与单线态氧(O)生成协同耦合,以实现高效的污染物降解。优化后的催化剂表现出优异的PMS活化效率,在10分钟内对多种难降解污染物的去除率>90.6%,同时在催化测试过程中保持令人满意的耐久性和结构稳定性。先进的基于同步加速器的X射线衍射(SXRD)和密度泛函理论(DFT)证实,铁、镍、铜共掺杂优化了锰的d带中心并提供了电子吸收位点。原位拉曼光谱、电化学分析和猝灭测试证实,改性后的电子结构促进了PMS与催化剂之间的双向电子转移,从而在复杂水基质中具备广谱净化能力。这项工作为氧化还原活性催化剂的多金属调控提供了原子层面的见解,并为设计高效节能的氧化系统以实现可持续水修复提供了新思路。