Su Weiwei, Wang Han, Zhao Shuai, Ji Xiuru, Jiang Hongjing, Li Kexian, Zuo Changjing, Zheng Jianming, Ni Dalong, Hu Jiajia
Department of Radiology, Naval Medical Center, Shanghai, China.
Department of Nuclear Medicine, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China.
Eur J Nucl Med Mol Imaging. 2025 Jul 1. doi: 10.1007/s00259-025-07432-7.
Radio-nanomedicine, such as I-labelled TiO nanoparticles (I-TiO NPs), presents a promising tumour treatment approach. By leveraging I as an electron donor to activate TiO NPs and promote γ-ray-induced HO radiolysis, I-TiO generates reactive oxygen species (ROS) and induces DNA damage, thus enabling catalytic internal radiotherapy (CIR). Since DNA is a key target of radiation and ROS-induced damage, enhancing nuclear delivery is critical. However, lysosomal entrapment of I-TiO NPs greatly restricts the efficacy of CIR. To overcome this limitation, we conjugated I-TiO with transactivator of transcription/hemagglutinin-2 (I-TiO-TAT/HA2), hypothesising that TAT/HA2-mediated lysosomal escape and nuclear accumulation could improve the anti-tumour effects of I-TiO.
TiO NPs and TiO-TAT/HA2 were synthesised and labelled with I. Subcellular localisation was observed by confocal microscopy and biological transmission electron microscopy (bio-TEM). The effects of I-TiO-TAT/HA2 on PANC-1 cells were assessed by the CCK-8 assay (cell viability), flow cytometry (apoptosis and ROS generation), proliferating cell nuclear antigen (PCNA) staining (proliferation), γ-H2AX immunofluorescence (DNA damage), and western blotting (DNA repair protein expression). In a subcutaneous pancreatic cancer mouse model, the intratumoural intra-tumoural retention of cyanine 5-labelled NPs (Cy5-NPs) was tracked via fluorescence imaging, whereas I-TiO-TAT/HA2 was monitored by single-photon emission computed tomography (SPECT). Mice received intra-tumoural injections of DMEM, I, I-TiO, or I-TiO-TAT/HA2, and tumour volume and mouse weight and survival were recorded. Tumour glycometabolism was evaluated using F-fluorodeoxyglucose positron emission tomography/computed tomography (¹⁸F-FDG PET/CT) before and after treatment. Haematoxylin and eosin (H&E), TdT-mediated dUTP nick end labelling (TUNEL), and immunohistochemical staining (Ki-67, DNA repair proteins) were performed.
The labelling rates of I-TiO and I-TiO-TAT/HA2 averaged 89.0% and 90.1%, respectively. Confocal microscopy and bio-TEM confirmed the nucleus-targeting ability of TiO-TAT/HA2. In vitro, I-TiO-TAT/HA2 significantly increased apoptosis and DNA damage and reduced DNA repair protein expression (RAD51and 53BP1) versus I-TiO (all p < 0.05). I-TiO-TAT/HA2 additionally reduced PCNA expression and increased ROS production (both p > 0.05). In vivo, Cy5-NPs, I-TiO, and I-TiO-TAT/HA2 exhibited prolonged intra-tumoural retention. Tumours treated with I-TiO-TAT/HA2 displayed a significantly smaller volume, enhanced necrosis and apoptosis (H&E, TUNEL), and downregulated DNA repair protein expression (all p < 0.05) and reduced Ki-67 expression (p > 0.05) compared with the effects of I-TiO.
I-TiO-TAT/HA2 exhibited markedly enhanced efficacy, likely through the precise nuclear delivery of ROS rather than increased ROS production. This strategy presents a promising method to improve tumour therapy, and it could be adapted for other macromolecular therapeutics.
放射性纳米医学,如碘标记的二氧化钛纳米颗粒(I-TiO NPs),是一种很有前景的肿瘤治疗方法。通过利用碘作为电子供体来激活二氧化钛纳米颗粒并促进γ射线诱导的羟基自由基(HO)辐射分解,I-TiO可产生活性氧(ROS)并诱导DNA损伤,从而实现催化内放射治疗(CIR)。由于DNA是辐射和ROS诱导损伤的关键靶点,增强核内递送至关重要。然而,I-TiO NPs被溶酶体截留极大地限制了CIR的疗效。为克服这一局限性,我们将I-TiO与转录激活因子/血凝素-2(I-TiO-TAT/HA2)偶联,推测TAT/HA2介导的溶酶体逃逸和核内积累可提高I-TiO的抗肿瘤效果。
合成二氧化钛纳米颗粒和TiO-TAT/HA2并用碘标记。通过共聚焦显微镜和生物透射电子显微镜(bio-TEM)观察亚细胞定位。采用CCK-8法(细胞活力)、流式细胞术(凋亡和ROS生成)、增殖细胞核抗原(PCNA)染色(增殖)、γ-H2AX免疫荧光(DNA损伤)和蛋白质免疫印迹法(DNA修复蛋白表达)评估I-TiO-TAT/HA2对胰腺癌细胞系PANC-1的作用。在皮下胰腺癌小鼠模型中,通过荧光成像追踪花菁5标记的纳米颗粒(Cy5-NPs)在肿瘤内的滞留情况,而通过单光子发射计算机断层扫描(SPECT)监测I-TiO-TAT/HA2。小鼠接受肿瘤内注射DMEM、碘、I-TiO或I-TiO-TAT/HA2,并记录肿瘤体积、小鼠体重和生存情况。治疗前后采用氟代脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(¹⁸F-FDG PET/CT)评估肿瘤糖代谢情况。进行苏木精-伊红(H&E)染色、TdT介导的dUTP缺口末端标记(TUNEL)和免疫组织化学染色(Ki-67、DNA修复蛋白)。
I-TiO和I-TiO-TAT/HA2的标记率分别平均为89.0%和90.1%。共聚焦显微镜和bio-TEM证实了TiO-TAT/HA2的核靶向能力。在体外,与I-TiO相比,I-TiO-TAT/HA2显著增加凋亡和DNA损伤,并降低DNA修复蛋白表达(RAD51和53BP1,均p < 0.05)。I-TiO-TAT/HA2还降低了PCNA表达并增加了ROS生成(均p > 0.05)。在体内,Cy5-NPs、I-TiO和I-TiO-TAT/HA2在肿瘤内的滞留时间延长。与I-TiO的作用相比,用I-TiO-TAT/HA2治疗的肿瘤体积显著更小,坏死和凋亡增强(H&E、TUNEL),DNA修复蛋白表达下调(均p < 0.05),Ki-67表达降低(p > 0.05)。
I-TiO-TAT/HA2表现出显著增强的疗效,可能是通过ROS的精确核内递送而非增加ROS生成。该策略是一种改善肿瘤治疗的有前景的方法,并且可适用于其他大分子治疗药物。