文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习算法构建卵巢癌预后评分模型。

Construction of prognostic scoring model for ovarian cancer based on deep learning algorithm.

作者信息

Zhong Xiaolin, Xiao Hongyang, Lu Weihong, Chen Jiayuan, Chao Fan, Tu Ruiqin

机构信息

Gynecology, Zhongshan Hospital Fudan University (Xiamen Branch), Xiamen, 361006, Fujian, China.

Gynecology, Zhongshan Hospital, Fudan University, Shanghai, 200035, China.

出版信息

Discov Oncol. 2025 Jul 1;16(1):1228. doi: 10.1007/s12672-025-03011-2.


DOI:10.1007/s12672-025-03011-2
PMID:40591194
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12214144/
Abstract

Ovarian cancer is one of the deadliest cancers of the female reproductive system, with poor prognosis, especially when diagnosed at an advanced stage. Accurate prognostic prediction and timely treatment are critical for improving patient outcomes. The aim of this study was to develop a prognostic prediction model for ovarian cancer based on pathological images. 158 In-house and 105 TCGA-OV pathological slides were processed with Macenko's algorithm for stain normalization and patch extraction (256 × 256 pixels). The CLAM framework was applied to construct a prognostic model validated via time-dependent ROC and survival analysis. The model achieved AUCs of 0.93 (internal) and 0.70 (external), demonstrating its potential for clinical translation. In addition, the prediction model was analysed in combination with patients' clinical characteristics and transcriptomic data. The results showed a significant prognostic difference between high and low risk groups. Our model can accurately predict the prognosis of ovarian cancer patients, which provides certain reference value for clinical diagnosis and treatment, especially when integrated with biomarkers like CA-125 for personalized risk stratification.

摘要

卵巢癌是女性生殖系统中最致命的癌症之一,预后较差,尤其是在晚期被诊断出来时。准确的预后预测和及时的治疗对于改善患者的治疗结果至关重要。本研究的目的是基于病理图像开发一种卵巢癌的预后预测模型。对158张内部病理切片和105张TCGA-OV病理切片采用Macenko算法进行染色归一化和补丁提取(256×256像素)。应用CLAM框架构建了一个通过时间依赖的ROC和生存分析验证的预后模型。该模型的内部AUC为0.93,外部AUC为0.70,表明其具有临床转化的潜力。此外,结合患者的临床特征和转录组数据对预测模型进行了分析。结果显示高风险组和低风险组之间存在显著的预后差异。我们的模型可以准确预测卵巢癌患者的预后,为临床诊断和治疗提供一定的参考价值,特别是与CA-125等生物标志物结合用于个性化风险分层时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ff/12214144/1e41b8042265/12672_2025_3011_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ff/12214144/8e11f76246c4/12672_2025_3011_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ff/12214144/c1bd602288e9/12672_2025_3011_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ff/12214144/621cd80bb0ef/12672_2025_3011_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ff/12214144/b1dcb930b743/12672_2025_3011_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ff/12214144/47e12dc4ea3f/12672_2025_3011_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ff/12214144/dbbccab0dbc6/12672_2025_3011_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ff/12214144/1e41b8042265/12672_2025_3011_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ff/12214144/8e11f76246c4/12672_2025_3011_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ff/12214144/c1bd602288e9/12672_2025_3011_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ff/12214144/621cd80bb0ef/12672_2025_3011_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ff/12214144/b1dcb930b743/12672_2025_3011_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ff/12214144/47e12dc4ea3f/12672_2025_3011_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ff/12214144/dbbccab0dbc6/12672_2025_3011_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ff/12214144/1e41b8042265/12672_2025_3011_Fig7_HTML.jpg

相似文献

[1]
Construction of prognostic scoring model for ovarian cancer based on deep learning algorithm.

Discov Oncol. 2025-7-1

[2]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[3]
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.

Cochrane Database Syst Rev. 2022-9-26

[4]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[5]
Intraoperative frozen section analysis for the diagnosis of early stage ovarian cancer in suspicious pelvic masses.

Cochrane Database Syst Rev. 2016-3-1

[6]
The comparative and added prognostic value of biomarkers to the Revised Cardiac Risk Index for preoperative prediction of major adverse cardiac events and all-cause mortality in patients who undergo noncardiac surgery.

Cochrane Database Syst Rev. 2021-12-21

[7]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of topotecan for ovarian cancer.

Health Technol Assess. 2001

[8]
Optimal primary surgical treatment for advanced epithelial ovarian cancer.

Cochrane Database Syst Rev. 2011-8-10

[9]
Dexrazoxane for preventing or reducing cardiotoxicity in adults and children with cancer receiving anthracyclines.

Cochrane Database Syst Rev. 2022-9-27

[10]
Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma.

Cochrane Database Syst Rev. 2022-3-2

本文引用的文献

[1]
Histopathologic image-based deep learning classifier for predicting platinum-based treatment responses in high-grade serous ovarian cancer.

Nat Commun. 2024-5-18

[2]
Modulator of TMB-associated immune infiltration (MOTIF) predicts immunotherapy response and guides combination therapy.

Sci Bull (Beijing). 2024-3-30

[3]
Machine learning in computational histopathology: Challenges and opportunities.

Genes Chromosomes Cancer. 2023-9

[4]
Annotation-Free Deep Learning-Based Prediction of Thyroid Molecular Cancer Biomarker BRAF (V600E) from Cytological Slides.

Int J Mol Sci. 2023-1-28

[5]
Exploring prognostic indicators in the pathological images of ovarian cancer based on a deep survival network.

Front Genet. 2023-1-4

[6]
Development and Evaluation of a Novel Deep-Learning-Based Framework for the Classification of Renal Histopathology Images.

Bioengineering (Basel). 2022-8-30

[7]
Cinnamaldehyde Suppressed EGF-Induced EMT Process and Inhibits Ovarian Cancer Progression Through PI3K/AKT Pathway.

Front Pharmacol. 2022-5-12

[8]
The diagnostic value of serum miR-21 in patients with ovarian cancer: a systematic review and meta-analysis.

J Ovarian Res. 2022-5-2

[9]
Training Strategies for Radiology Deep Learning Models in Data-limited Scenarios.

Radiol Artif Intell. 2021-10-6

[10]
Quality control stress test for deep learning-based diagnostic model in digital pathology.

Mod Pathol. 2021-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索