Zhong Xiaolin, Xiao Hongyang, Lu Weihong, Chen Jiayuan, Chao Fan, Tu Ruiqin
Gynecology, Zhongshan Hospital Fudan University (Xiamen Branch), Xiamen, 361006, Fujian, China.
Gynecology, Zhongshan Hospital, Fudan University, Shanghai, 200035, China.
Discov Oncol. 2025 Jul 1;16(1):1228. doi: 10.1007/s12672-025-03011-2.
Ovarian cancer is one of the deadliest cancers of the female reproductive system, with poor prognosis, especially when diagnosed at an advanced stage. Accurate prognostic prediction and timely treatment are critical for improving patient outcomes. The aim of this study was to develop a prognostic prediction model for ovarian cancer based on pathological images. 158 In-house and 105 TCGA-OV pathological slides were processed with Macenko's algorithm for stain normalization and patch extraction (256 × 256 pixels). The CLAM framework was applied to construct a prognostic model validated via time-dependent ROC and survival analysis. The model achieved AUCs of 0.93 (internal) and 0.70 (external), demonstrating its potential for clinical translation. In addition, the prediction model was analysed in combination with patients' clinical characteristics and transcriptomic data. The results showed a significant prognostic difference between high and low risk groups. Our model can accurately predict the prognosis of ovarian cancer patients, which provides certain reference value for clinical diagnosis and treatment, especially when integrated with biomarkers like CA-125 for personalized risk stratification.
卵巢癌是女性生殖系统中最致命的癌症之一,预后较差,尤其是在晚期被诊断出来时。准确的预后预测和及时的治疗对于改善患者的治疗结果至关重要。本研究的目的是基于病理图像开发一种卵巢癌的预后预测模型。对158张内部病理切片和105张TCGA-OV病理切片采用Macenko算法进行染色归一化和补丁提取(256×256像素)。应用CLAM框架构建了一个通过时间依赖的ROC和生存分析验证的预后模型。该模型的内部AUC为0.93,外部AUC为0.70,表明其具有临床转化的潜力。此外,结合患者的临床特征和转录组数据对预测模型进行了分析。结果显示高风险组和低风险组之间存在显著的预后差异。我们的模型可以准确预测卵巢癌患者的预后,为临床诊断和治疗提供一定的参考价值,特别是与CA-125等生物标志物结合用于个性化风险分层时。
Clin Orthop Relat Res. 2024-9-1
Cochrane Database Syst Rev. 2022-9-26
Health Technol Assess. 2006-9
Cochrane Database Syst Rev. 2016-3-1
Cochrane Database Syst Rev. 2011-8-10
Cochrane Database Syst Rev. 2022-9-27
Cochrane Database Syst Rev. 2022-3-2
Genes Chromosomes Cancer. 2023-9
Bioengineering (Basel). 2022-8-30
Radiol Artif Intell. 2021-10-6