Suppr超能文献

数据受限场景下放射学深度学习模型的训练策略

Training Strategies for Radiology Deep Learning Models in Data-limited Scenarios.

作者信息

Candemir Sema, Nguyen Xuan V, Folio Les R, Prevedello Luciano M

机构信息

Department of Radiology, The Ohio State University College of Medicine, 395 W 12th Ave, Columbus, OH 43212 (S.C., X.V.N., L.M.P.); and Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md (L.R.F.).

出版信息

Radiol Artif Intell. 2021 Oct 6;3(6):e210014. doi: 10.1148/ryai.2021210014. eCollection 2021 Nov.

Abstract

Data-driven approaches have great potential to shape future practices in radiology. The most straightforward strategy to obtain clinically accurate models is to use large, well-curated and annotated datasets. However, patient privacy constraints, tedious annotation processes, and the limited availability of radiologists pose challenges to building such datasets. This review details model training strategies in scenarios with limited data, insufficiently labeled data, and/or limited expert resources. This review discusses strategies to enlarge the data sample, decrease the time burden of manual supervised labeling, adjust the neural network architecture to improve model performance, apply semisupervised approaches, and leverage efficiencies from pretrained models. Computer-aided Detection/Diagnosis, Transfer Learning, Limited Annotated Data, Augmentation, Synthetic Data, Semisupervised Learning, Federated Learning, Few-Shot Learning, Class Imbalance.

摘要

数据驱动的方法在塑造放射学未来实践方面具有巨大潜力。获得临床准确模型的最直接策略是使用大型、精心策划和注释的数据集。然而,患者隐私限制、繁琐的注释过程以及放射科医生数量有限,给构建此类数据集带来了挑战。本综述详细介绍了在数据有限、标注数据不足和/或专家资源有限的情况下的模型训练策略。本综述讨论了扩大数据样本、减轻人工监督标注的时间负担、调整神经网络架构以提高模型性能、应用半监督方法以及利用预训练模型提高效率的策略。计算机辅助检测/诊断、迁移学习、有限标注数据、增强、合成数据、半监督学习、联邦学习、少样本学习、类别不平衡。

相似文献

1
Training Strategies for Radiology Deep Learning Models in Data-limited Scenarios.数据受限场景下放射学深度学习模型的训练策略
Radiol Artif Intell. 2021 Oct 6;3(6):e210014. doi: 10.1148/ryai.2021210014. eCollection 2021 Nov.

引用本文的文献

6
Current State of Evidence for Use of MRI in LI-RADS.肝脏影像报告和数据系统(LI-RADS)中使用MRI的证据现状
J Magn Reson Imaging. 2025 Sep;62(3):640-653. doi: 10.1002/jmri.29748. Epub 2025 Feb 21.
8
[Explainable & Safe Artificial Intelligence in Radiology].放射学中可解释且安全的人工智能
J Korean Soc Radiol. 2024 Sep;85(5):834-847. doi: 10.3348/jksr.2024.0118. Epub 2024 Sep 27.

本文引用的文献

2
Text Data Augmentation for Deep Learning.用于深度学习的文本数据增强
J Big Data. 2021;8(1):101. doi: 10.1186/s40537-021-00492-0. Epub 2021 Jul 19.
8
The future of digital health with federated learning.联合学习助力数字健康的未来。
NPJ Digit Med. 2020 Sep 14;3:119. doi: 10.1038/s41746-020-00323-1. eCollection 2020.
9
End-To-End Alzheimer's Disease Diagnosis and Biomarker Identification.端到端的阿尔茨海默病诊断与生物标志物识别
Mach Learn Med Imaging. 2018 Sep;11046:337-345. doi: 10.1007/978-3-030-00919-9_39. Epub 2018 Sep 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验