Khiarak Behnam Nourmohammadi, da Silva Gelson T S T, Crane Jackson, O'Brien Colin P, Pepe Michael R, Gabardo Christine M, Golovanova Viktoria, García de Arquer F Pelayo, Dinh Cao-Thang
Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada.
Interdisciplinary Laboratory of Electrochemistry and Ceramics, Department of Chemistry, Federal University of Sao Carlos, São Carlos, SP, 13565-905, Brazil.
Angew Chem Int Ed Engl. 2025 Aug 25;64(35):e202509975. doi: 10.1002/anie.202509975. Epub 2025 Jul 17.
Carbon dioxide (CO) electroreduction directly from a reactive carbon solution (e.g., (bi)carbonate) provides a promising approach for integrating CO capture and conversion. Compared to CO conversion in gas-fed systems, this system typically suffers from low Faradaic efficiency (FE), especially for multicarbon (C) products. Here, we report an engineered material structuring to selectively produce C products directly from a N-saturated bicarbonate solution. Multiphysics modeling studies reveal the critical role of local current density distribution and the spatio-selective evolution of C products, which is favored in thinner catalysts (240 µm thickness). By jointly tailoring catalyst configuration and mass transport in bicarbonate electroreduction, adjusting the thickness, porosity, and surface oxidation of copper (Cu) mesh catalysts, as well as catholyte composition, we achieved a maximum CH FE of 39% and total C FE over 55% at 150 mA cm with a 240 µm thick Cu mesh. The system is also stable for over 160 h at 100 mA cm with maintained CH FE over 20%. Our electrolysis system converts bicarbonate to C with over 90% CO utilization efficiency, reducing regeneration and separation costs. Optimizing catalyst pore structure, and copper surface oxide is a key to maximizing CH production from bicarbonate solutions.
直接从活性碳溶液(如碳酸氢盐)中进行二氧化碳(CO₂)电还原为整合CO₂捕获与转化提供了一种很有前景的方法。与气体进料系统中的CO₂转化相比,该系统通常存在法拉第效率(FE)较低的问题,尤其是对于多碳(C)产物而言。在此,我们报告了一种经过设计的材料结构,可直接从氮饱和的碳酸氢盐溶液中选择性地生产含碳产物。多物理场建模研究揭示了局部电流密度分布以及含碳产物的空间选择性演化的关键作用,这在较薄的催化剂(240微米厚度)中更为有利。通过共同调整催化剂结构和碳酸氢盐电还原中的传质过程,调节铜(Cu)网催化剂的厚度、孔隙率和表面氧化程度以及阴极电解液组成,我们在使用240微米厚的铜网时,在150 mA cm⁻²的电流密度下实现了39%的最大CH₄法拉第效率以及超过55%的总碳法拉第效率。该系统在100 mA cm⁻²的电流密度下也能稳定运行超过160小时,CH₄法拉第效率保持在20%以上。我们的电解系统将碳酸氢盐转化为含碳产物,CO₂利用效率超过90%,降低了再生和分离成本。优化催化剂孔结构以及铜表面氧化物是使碳酸氢盐溶液中CH₄产量最大化的关键。