Suppr超能文献

宏观和纳米多孔银电极实现选择性和稳定的水相CO还原。

Macro- and Nano-Porous Ag Electrodes Enable Selective and Stable Aqueous CO Reduction.

作者信息

Nourmohammadi Khiarak Behnam, da Silva Gelson T S T, Grange Valentine, Gao Guorui, Golovanova Viktoria, de García de Arquer F Pelayo, Mascaro Lucia H, Dinh Cao-Thang

机构信息

Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada.

Interdisciplinary Laboratory of Electrochemistry and Ceramics, Department of Chemistry, Federal University of Sao Carlos, São Carlos, São Paulo, 13565-905, Brazil.

出版信息

Small. 2025 Feb;21(8):e2409669. doi: 10.1002/smll.202409669. Epub 2024 Dec 23.

Abstract

Electrochemical carbon dioxide (CO) reduction from aqueous solutions offers a promising strategy to overcome flooding and salt precipitation in gas diffusion electrodes used in gas-phase CO electrolysis. However, liquid-phase CO electrolysis often exhibits low CO reduction rates because of limited CO availability. Here, a macroporous Ag mesh is employed and activated to achieve selective CO conversion to CO with high rates from an aqueous bicarbonate solution. It is found that activation of Ag surface using oxidation/reduction cycles produces nanoporous surfaces that favor CO-to-CO conversion. Notably, it is found that a combination of dissolved CO in bicarbonate solution with CO generated in situ from bicarbonate ions enables increased CO availability and a CO-to-CO conversion rate over 100 mA cm. By optimizing the oxidation/reduction cycles to fine-tune the structure of Ag surface, CO-to-CO conversion is reported from a bicarbonate solution with CO Faradaic efficiency of over 85% at current density of 100 mA cm, high concentration of 24.7% at outlet gas stream and stability of over 100 h with maintaining CO FE over 85% during whole reaction time.

摘要

从水溶液中进行电化学二氧化碳(CO₂)还原为克服气相CO₂电解中气体扩散电极的水淹和盐沉淀问题提供了一种很有前景的策略。然而,由于CO₂可用性有限,液相CO₂电解通常表现出较低的CO₂还原速率。在此,采用并活化了一种大孔银网,以实现从碳酸氢盐水溶液中高选择性地将CO₂高效转化为CO。研究发现,通过氧化/还原循环对银表面进行活化会产生有利于CO₂转化为CO的纳米多孔表面。值得注意的是,发现溶解在碳酸氢盐溶液中的CO₂与由碳酸氢根离子原位生成的CO₂相结合,能够提高CO₂的可用性,并实现超过100 mA cm⁻²的CO₂转化为CO的速率。通过优化氧化/还原循环以微调银表面的结构,报道了在100 mA cm⁻²的电流密度下,从碳酸氢盐溶液中实现CO₂转化为CO,其法拉第效率超过85%,出口气流中CO浓度高达24.7%,并且在整个反应时间内保持CO法拉第效率超过85%的情况下,稳定性超过100小时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2db0/11855228/55edbf71cda7/SMLL-21-2409669-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验