文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用治疗前胸部CT影像数据预测EGFR阳性肺腺癌患者的脑转移

Predicting brain metastases in EGFR-positive lung adenocarcinoma patients using pre-treatment CT lung imaging data.

作者信息

He Xinliu, Guan Chao, Chen Ting, Wu Houde, Su Liuchao, Zhao Mingfang, Guo Li

机构信息

School of Medical Imaging, School of Medical Technology, Tianjin Medical University, Tianjin 300203, China.

Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.

出版信息

Eur J Radiol. 2025 Sep;190:112265. doi: 10.1016/j.ejrad.2025.112265. Epub 2025 Jun 26.


DOI:10.1016/j.ejrad.2025.112265
PMID:40592110
Abstract

OBJECTIVES: This study aims to establish a dual-feature fusion model integrating radiomic features with deep learning features, utilizing single-modality pre-treatment lung CT image data to achieve early warning of brain metastasis (BM) risk within 2 years in EGFR-positive lung adenocarcinoma. MATERIALS AND METHODS: After rigorous screening of 362 EGFR-positive lung adenocarcinoma patients with pre-treatment lung CT images, 173 eligible participants were ultimately enrolled in this study, including 93 patients with BM and 80 without BM. Radiomic features were extracted from manually segmented lung nodule regions, and a selection of features was used to develop radiomics models. For deep learning, ROI-level CT images were processed using several deep learning networks, including the novel vision mamba, which was applied for the first time in this context. A feature-level fusion model was developed by combining radiomic and deep learning features. Model performance was assessed using receiver operating characteristic (ROC) curves and decision curve analysis (DCA), with statistical comparisons of area under the curve (AUC) values using the DeLong test. RESULTS: Among the models evaluated, the fused vision mamba model demonstrated the best classification performance, achieving an AUC of 0.86 (95% CI: 0.82-0.90), with a recall of 0.88, F1-score of 0.70, and accuracy of 0.76. This fusion model outperformed both radiomics-only and deep learning-only models, highlighting its superior predictive accuracy for early BM risk detection in EGFR-positive lung adenocarcinoma patients. CONCLUSION: The fused vision mamba model, utilizing single CT imaging data, significantly enhances the prediction of brain metastasis within two years in EGFR-positive lung adenocarcinoma patients. This novel approach, combining radiomic and deep learning features, offers promising clinical value for early detection and personalized treatment.

摘要

目的:本研究旨在建立一个将放射组学特征与深度学习特征相结合的双特征融合模型,利用单模态治疗前肺部CT图像数据,实现对表皮生长因子受体(EGFR)阳性肺腺癌患者2年内脑转移(BM)风险的早期预警。 材料与方法:在对362例有治疗前肺部CT图像的EGFR阳性肺腺癌患者进行严格筛选后,最终有173名符合条件的参与者纳入本研究,其中包括93例发生BM的患者和80例未发生BM的患者。从手动分割的肺结节区域提取放射组学特征,并使用部分特征建立放射组学模型。对于深度学习,使用包括新型视觉曼巴网络在内的多个深度学习网络对感兴趣区(ROI)层面的CT图像进行处理,该网络在此研究中首次应用。通过结合放射组学和深度学习特征建立特征层面的融合模型。使用受试者操作特征(ROC)曲线和决策曲线分析(DCA)评估模型性能,并使用德龙检验对曲线下面积(AUC)值进行统计学比较。 结果:在评估的模型中,融合视觉曼巴模型表现出最佳的分类性能,AUC为0.86(95%CI:0.82 - 0.90),召回率为0.88,F1值为0.70,准确率为0.76。该融合模型优于单纯的放射组学模型和单纯的深度学习模型,突出了其在EGFR阳性肺腺癌患者早期BM风险检测中的卓越预测准确性。 结论:融合视觉曼巴模型利用单一CT成像数据,显著提高了EGFR阳性肺腺癌患者两年内脑转移的预测能力。这种结合放射组学和深度学习特征的新方法,为早期检测和个性化治疗提供了有前景的临床价值。

相似文献

[1]
Predicting brain metastases in EGFR-positive lung adenocarcinoma patients using pre-treatment CT lung imaging data.

Eur J Radiol. 2025-9

[2]
2.5D deep learning radiomics and clinical data for predicting occult lymph node metastasis in lung adenocarcinoma.

BMC Med Imaging. 2025-7-1

[3]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[4]
Dual-energy CT Radiomics Combined with Quantitative Parameters for Differentiating Lung Adenocarcinoma From Squamous Cell Carcinoma: A Dual-center Study.

Acad Radiol. 2025-3

[5]
Nomogram based on radiomics and CT features for predicting visceral pleural invasion of invasive adenocarcinoma ≤ 2 cm: A multicenter study.

Eur J Radiol. 2025-6-12

[6]
Deep learning radiomics fusion model to predict visceral pleural invasion of clinical stage IA lung adenocarcinoma: a multicenter study.

J Cardiothorac Surg. 2025-5-28

[7]
Integrating Clinical Data and Radiomics and Deep Learning Features for End-to-End Delayed Cerebral Ischemia Prediction on Noncontrast CT.

AJNR Am J Neuroradiol. 2024-9-9

[8]
Deciphering the intratumoral histologic heterogeneity of lung adenocarcinoma using radiomics.

Eur Radiol. 2025-2-12

[9]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[10]
Ensemble Machine Learning Classifiers Combining CT Radiomics and Clinical-Radiological Features for Preoperative Prediction of Pathological Invasiveness in Lung Adenocarcinoma Presenting as Part-Solid Nodules: A Multicenter Retrospective Study.

Technol Cancer Res Treat. 2025

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索