Li Yunhua, Ding Jianbang, Wu Kun, Qi Wanyin, Lin Shanyue, Chen Gangwen, Zuo Zhichao
Department of Radiology, the Jintang First People's Hospital, West China Sichuan University Jintang Hospital, Chengdu, China.
Department of Stomatology, Xiangtan Central Hospital, Xiangtan, China.
Technol Cancer Res Treat. 2025 Jan-Dec;24:15330338251351365. doi: 10.1177/15330338251351365. Epub 2025 Jun 17.
BackgroundLung adenocarcinomas manifesting as part-solid nodules (PSNs) represent a distinct clinical subtype where accurate preoperative determination of pathological invasiveness critically influences both prognosis and surgical decision-making. This multicenter study aims to develop an ensemble machine learning classifier that integrates computed tomography (CT) radiomic signatures with clinical-radiological features to enhance the preoperative prediction of invasive status.MethodsWe retrospectively analyzed 344 patients with pathologically confirmed lung adenocarcinoma presenting as PSNs across three medical centers. Following random allocation into training (n = 240) and validation (n = 104) sets (7:3 ratio), we extracted 1239 quantitative radiomic features from preoperative thin-section CT scans. Through rigorous feature engineering, we constructed a radiomic score using least absolute shrinkage and selection operator regression. We systematically evaluated both single-algorithm classifiers and ensemble approaches (including hard/soft voting and stacking), incorporating both the radiomic score and clinical-radiological features.ResultsAmong the various evaluated machine learning models, the stacking classifier, which combines radiomic scores and clinical-radiological features, performed the best, achieving an AUC of 0.84, an accuracy of 0.817, an F1 score of 0.869, a precision of 0.818, and a recall of 0.926.ConclusionOur stacking ensemble learning classifier, which synergistically combines CT radiomics signatures with clinical-radiological features, provides a clinically actionable tool for the preoperative prediction of pathological invasiveness in PSN-type lung adenocarcinoma, thereby enhancing individualized surgical planning.
背景
表现为部分实性结节(PSN)的肺腺癌是一种独特的临床亚型,术前准确判定病理侵袭性对预后和手术决策均有至关重要的影响。本多中心研究旨在开发一种集成机器学习分类器,该分类器将计算机断层扫描(CT)影像组学特征与临床放射学特征相结合,以提高术前对侵袭状态的预测能力。
方法
我们回顾性分析了三个医疗中心344例经病理证实为PSN的肺腺癌患者。按照随机分配为训练集(n = 240)和验证集(n = 104)(比例为7:3),我们从术前薄层CT扫描中提取了1239个定量影像组学特征。通过严格的特征工程,我们使用最小绝对收缩和选择算子回归构建了一个影像组学评分。我们系统评估了单算法分类器和集成方法(包括硬/软投票和堆叠),纳入了影像组学评分和临床放射学特征。
结果
在各种评估的机器学习模型中,结合影像组学评分和临床放射学特征的堆叠分类器表现最佳,曲线下面积(AUC)为0.84,准确率为0.817,F1分数为0.869,精确率为0.818,召回率为0.926。
结论
我们的堆叠集成学习分类器将CT影像组学特征与临床放射学特征协同结合,为PSN型肺腺癌病理侵袭性的术前预测提供了一种临床可行的工具,从而加强了个体化手术规划。