Li Xue-Cheng, Huo Ming-Wei, Huang Xiang-Xiang, Shi Ling-Zhi, Gu Le-Yan, Zhang Ye-Chao, Liu Jing-Yi, Huang Renyu, Cao Qing-Ri
College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China.
College of Social Science, Soochow University, Institute of Culture and Tourism Development, Suzhou 215123, People's Republic of China.
Int J Pharm. 2025 Sep 15;682:125916. doi: 10.1016/j.ijpharm.2025.125916. Epub 2025 Jun 29.
Polymeric acids and their copolymer-based microspheres constitute a critical platform for extended and controlled-release drug delivery systems. However, the precipitated drug crystals (commonly termed "quick sand" phenomenon) during microsphere fabrication significantly limits their application for specific drug molecules, leading to suboptimal drug loading (DL) and encapsulation efficiency (EE) in final products. In this study, dezocine-loaded microspheres (Dez-Ms) were fabricated using microfluidic reactor technology. The formulation and process parameters were systematically optimized through single-factor screening and orthogonal experimental design. Three distinct formulations with high, medium, and low release profiles (designated as Dez-Ms-H, Dez-Ms-M, and Dez-Ms-L) were characterized for mean particle size, DL, and EE. The optimized formulations exhibited mean particle sizes of 55.99 ± 0.02 μm, 62.42 ± 0.01 μm, and 52.93 ± 0.16 μm, DL values of 25.96 ± 0.14 %, 25.02 ± 0.23 %, and 23.12 ± 0.52 %, and EE values of 86.65 ± 0.28 %, 86.33 ± 0.66 %, and 79.72 ± 2.00 %, respectively. Physicochemical characterization via X-ray powder diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopy revealed alterations in the drug's melting point, crystalline form, and infrared absorption peaks post-encapsulation, suggesting intermolecular interactions between the polymeric carrier and the drug within the microspheres. Pharmacokinetic analysis demonstrated that, compared to the dezocine solution group (Dez-Sol), the microsphere groups (Dez-Ms-H, Dez-Ms-M, and Dez-Ms-L) exhibited significantly elevated maximum drug concentrations (C) and clearance rates (CL), alongside prolonged time to peak concentration (T), elimination half-life (T), and mean residence time (MRT) (p < 0.05), confirming sustained in vivo release kinetics. An internally validated in vitro-in vivo correlation (IVIVC) model demonstrated robust predictive capability for the microspheres' pharmacokinetic behavior, establishing a foundation for achieving Level A IVIVC compliance. Additionally, a significant delay in pain response latency (p < 0.05) was observed in the Dez-Ms groups compared to Dez-Sol, indicating sustained analgesic efficacy. Preliminary stability studies further identified optimal storage conditions for Dez-Ms as hermetically sealed containers under dry, low-temperature, and light-protected environments. In conclusion, this study successfully optimized Dez-Ms formulations to overcome the "quick sand" limitation, achieving high EE, validated IVIVC, and prolonged analgesic activity. These findings advance the development of polymeric microsphere systems for controlled drug delivery applications.
聚合酸及其基于共聚物的微球构成了长效和控释药物递送系统的关键平台。然而,微球制备过程中沉淀的药物晶体(通常称为“流沙”现象)显著限制了它们对特定药物分子的应用,导致最终产品中的药物载量(DL)和包封率(EE)不理想。在本研究中,采用微流控反应器技术制备了载地佐辛微球(Dez-Ms)。通过单因素筛选和正交实验设计对配方和工艺参数进行了系统优化。对具有高、中、低释放曲线的三种不同配方(分别指定为Dez-Ms-H、Dez-Ms-M和Dez-Ms-L)进行了平均粒径、DL和EE表征。优化后的配方平均粒径分别为55.99±0.02μm、62.42±0.01μm和52.93±0.16μm,DL值分别为25.96±0.14%、25.02±0.23%和23.12±0.52%,EE值分别为86.65±0.28%、86.33±0.66%和79.72±2.00%。通过X射线粉末衍射、差示扫描量热法和傅里叶变换红外光谱进行的物理化学表征显示,包封后药物的熔点、晶型和红外吸收峰发生了变化,表明聚合物载体与微球内药物之间存在分子间相互作用。药代动力学分析表明,与地佐辛溶液组(Dez-Sol)相比,微球组(Dez-Ms-H、Dez-Ms-M和Dez-Ms-L)的最大药物浓度(C)和清除率(CL)显著升高,同时达峰时间(T)、消除半衰期(T)和平均驻留时间(MRT)延长(p<0.05),证实了体内持续释放动力学。内部验证的体外-体内相关性(IVIVC)模型显示出对微球药代动力学行为的强大预测能力,为实现A级IVIVC合规奠定了基础。此外,与Dez-Sol相比,Dez-Ms组观察到疼痛反应潜伏期显著延迟(p<0.05),表明具有持续的镇痛效果。初步稳定性研究进一步确定了Dez-Ms的最佳储存条件为干燥、低温和避光环境下的密封容器。总之,本研究成功优化了Dez-Ms配方以克服“流沙”限制,实现了高EE、验证的IVIVC和延长的镇痛活性。这些发现推动了用于控释药物递送应用的聚合物微球系统的发展。