Suppr超能文献

视觉皮层群体中时间规律的无监督学习。

Unsupervised learning of temporal regularities in visual cortical populations.

作者信息

Pojoga Sorin, Andrei Ariana, Dragoi Valentin

机构信息

Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas, Houston, TX, USA.

Center for Neural Systems Restoration, Houston Methodist Research Institute, Dept. of Neurosurgery, Houston, TX, USA.

出版信息

Nat Commun. 2025 Jul 1;16(1):5614. doi: 10.1038/s41467-025-60731-3.

Abstract

The brain's ability to extract temporal information from dynamic stimuli in the environment is essential for everyday behavior. To extract temporal statistical regularities, neural circuits must possess the ability to measure, produce, and anticipate sensory events. Here we report that when neural populations in macaque primary visual cortex are triggered to exhibit a periodic response to a repetitive sequence of optogenetic laser flashes, they learn to accurately reproduce the temporal sequence even when light stimulation is turned off. Despite the fact that individual cells had a poor capacity to extract temporal information, the population of neurons reproduced the periodic sequence in a temporally precise manner. The same neural population could learn different frequencies of external stimulation, and the ability to extract temporal information was found in all cortical layers. These results demonstrate a remarkable ability of sensory cortical populations to extract and reproduce complex temporal structure from unsupervised external stimulation even when stimuli are perceptually irrelevant.

摘要

大脑从环境中的动态刺激中提取时间信息的能力对日常行为至关重要。为了提取时间统计规律,神经回路必须具备测量、产生和预测感觉事件的能力。我们在此报告,当猕猴初级视觉皮层中的神经群体被触发对重复的光遗传学激光闪光序列表现出周期性反应时,即使光刺激关闭,它们也能学会准确重现时间序列。尽管单个细胞提取时间信息的能力较差,但神经元群体以时间精确的方式重现了周期性序列。同一神经群体可以学习不同频率的外部刺激,并且在所有皮质层中都发现了提取时间信息的能力。这些结果表明,即使刺激在感知上不相关,感觉皮层群体也具有从无监督的外部刺激中提取和重现复杂时间结构的非凡能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44e4/12216384/f088bb637ea2/41467_2025_60731_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验