Suppr超能文献

有限的证据表明,猕猴和人类的视觉皮层存在感觉预测误差反应。

Limited Evidence for Sensory Prediction Error Responses in Visual Cortex of Macaques and Humans.

机构信息

Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

Department of Otorhinolaryngology - Head & Neck Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

出版信息

Cereb Cortex. 2021 May 10;31(6):3136-3152. doi: 10.1093/cercor/bhab014.

Abstract

A recent formulation of predictive coding theory proposes that a subset of neurons in each cortical area encodes sensory prediction errors, the difference between predictions relayed from higher cortex and the sensory input. Here, we test for evidence of prediction error responses in spiking responses and local field potentials (LFP) recorded in primary visual cortex and area V4 of macaque monkeys, and in complementary electroencephalographic (EEG) scalp recordings in human participants. We presented a fixed sequence of visual stimuli on most trials, and violated the expected ordering on a small subset of trials. Under predictive coding theory, pattern-violating stimuli should trigger robust prediction errors, but we found that spiking, LFP and EEG responses to expected and pattern-violating stimuli were nearly identical. Our results challenge the assertion that a fundamental computational motif in sensory cortex is to signal prediction errors, at least those based on predictions derived from temporal patterns of visual stimulation.

摘要

近期的预测编码理论提出,每个皮质区域的一部分神经元对感觉预测误差进行编码,即从更高层次的皮质传递的预测与感觉输入之间的差异。在这里,我们在恒河猴初级视觉皮层和 V4 区的尖峰和局部场电位(LFP)记录中,以及在人类参与者的互补脑电图(EEG)头皮记录中,测试了预测误差反应的证据。在大多数试验中,我们呈现了一个固定的视觉刺激序列,而在一小部分试验中则违反了预期的顺序。根据预测编码理论,模式破坏刺激应该会引发强烈的预测误差,但我们发现,对预期和模式破坏刺激的尖峰、LFP 和 EEG 反应几乎相同。我们的结果挑战了这样一种说法,即在感觉皮层中,一种基本的计算模式是发出预测误差信号,至少是那些基于视觉刺激的时间模式推导出来的预测误差信号。

相似文献

1
Limited Evidence for Sensory Prediction Error Responses in Visual Cortex of Macaques and Humans.
Cereb Cortex. 2021 May 10;31(6):3136-3152. doi: 10.1093/cercor/bhab014.
2
Visual omitted stimulus potentials are not retinotopic.
Neurosci Lett. 2024 May 1;830:137777. doi: 10.1016/j.neulet.2024.137777. Epub 2024 Apr 15.
3
Inferring Cortical Variability from Local Field Potentials.
J Neurosci. 2016 Apr 6;36(14):4121-35. doi: 10.1523/JNEUROSCI.2502-15.2016.
4
Spatial patterns of spontaneous local field activity in the monkey visual cortex.
Rev Neurosci. 2003;14(1-2):195-205. doi: 10.1515/revneuro.2003.14.1-2.195.
5
Inferring spike trains from local field potentials.
J Neurophysiol. 2008 Mar;99(3):1461-76. doi: 10.1152/jn.00919.2007. Epub 2007 Dec 26.
6
Beta oscillation dynamics in extrastriate cortex after removal of primary visual cortex.
J Neurosci. 2014 Aug 27;34(35):11857-64. doi: 10.1523/JNEUROSCI.0509-14.2014.
7
A comparison of hemodynamic and neural responses in cat visual cortex using complex stimuli.
Cereb Cortex. 2004 Aug;14(8):881-91. doi: 10.1093/cercor/bhh047. Epub 2004 Apr 14.
8
Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex.
J Neurophysiol. 1997 Jan;77(1):24-42. doi: 10.1152/jn.1997.77.1.24.

引用本文的文献

1
Unsupervised learning of temporal regularities in visual cortical populations.
Nat Commun. 2025 Jul 1;16(1):5614. doi: 10.1038/s41467-025-60731-3.
3
Adaptation, not prediction, drives neuronal spiking responses in mammalian sensory cortex.
bioRxiv. 2025 Jan 9:2024.10.02.616378. doi: 10.1101/2024.10.02.616378.
4
Distinguishing expectation and attention effects in processing temporal patterns of visual input.
Brain Cogn. 2024 Dec;182:106228. doi: 10.1016/j.bandc.2024.106228. Epub 2024 Oct 25.
6
Recent Visual Experience Reshapes V4 Neuronal Activity and Improves Perceptual Performance.
J Neurosci. 2024 Oct 9;44(41):e1764232024. doi: 10.1523/JNEUROSCI.1764-23.2024.
7
Adaptation of the inferior temporal neurons and efficient visual processing.
Front Behav Neurosci. 2024 Jul 26;18:1398874. doi: 10.3389/fnbeh.2024.1398874. eCollection 2024.
8
Cellular mechanisms of cooperative context-sensitive predictive inference.
Curr Res Neurobiol. 2024 Apr 15;6:100129. doi: 10.1016/j.crneur.2024.100129. eCollection 2024.
9
Prior probability cues bias sensory encoding with increasing task exposure.
Elife. 2024 Apr 2;12:RP91135. doi: 10.7554/eLife.91135.

本文引用的文献

1
Multiple Timescales Account for Adaptive Responses across Sensory Cortices.
J Neurosci. 2019 Dec 11;39(50):10019-10033. doi: 10.1523/JNEUROSCI.1642-19.2019. Epub 2019 Oct 29.
2
Predicting Perceptual Decisions Using Visual Cortical Population Responses and Choice History.
J Neurosci. 2019 Aug 21;39(34):6714-6727. doi: 10.1523/JNEUROSCI.0035-19.2019. Epub 2019 Jun 24.
4
Large-Scale Cortical Networks for Hierarchical Prediction and Prediction Error in the Primate Brain.
Neuron. 2018 Dec 5;100(5):1252-1266.e3. doi: 10.1016/j.neuron.2018.10.004. Epub 2018 Oct 25.
5
Predictive Processing: A Canonical Cortical Computation.
Neuron. 2018 Oct 24;100(2):424-435. doi: 10.1016/j.neuron.2018.10.003.
6
Forward models demonstrate that repetition suppression is best modelled by local neural scaling.
Nat Commun. 2018 Sep 21;9(1):3854. doi: 10.1038/s41467-018-05957-0.
7
Neural Correlate of Visual Familiarity in Macaque Area V2.
J Neurosci. 2018 Oct 17;38(42):8967-8975. doi: 10.1523/JNEUROSCI.0664-18.2018. Epub 2018 Sep 4.
8
Face Repetition Probability Does Not Affect Repetition Suppression in Macaque Inferotemporal Cortex.
J Neurosci. 2018 Aug 22;38(34):7492-7504. doi: 10.1523/JNEUROSCI.0462-18.2018. Epub 2018 Jul 20.
9
Deviance sensitivity in the auditory cortex of freely moving rats.
PLoS One. 2018 Jun 6;13(6):e0197678. doi: 10.1371/journal.pone.0197678. eCollection 2018.
10
High-Level Prediction Signals in a Low-Level Area of the Macaque Face-Processing Hierarchy.
Neuron. 2017 Sep 27;96(1):89-97.e4. doi: 10.1016/j.neuron.2017.09.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验