Suppr超能文献

液滴反弹角的极限

The limit of droplet rebound angle.

作者信息

Zhao Zhipeng, Li Wei, Hu Xiaotian, Deng Qiyu, Zhang Yiyuan, Jiang Shaojun, Sun Pengcheng, Zhu Hengjia, Li Hegeng, Shi Siyi, Huang Zhandong, Li An, Li Huizeng, Su Meng, Li Fengyu, Wang Steven, Song Yanlin, Wang Liqiu

机构信息

Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China.

Institute of Polymers and Energy Chemistry (IPEC)/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, China.

出版信息

Nat Commun. 2025 Jul 1;16(1):5684. doi: 10.1038/s41467-025-61300-4.

Abstract

Regulating the motion state of droplets after impacting on solid surfaces is crucial in many fields including self-cleaning, energy harvesting, and microfluidics. The rebound angle of the droplet is a key factor in determining its motion state. However, up until now, the limit of droplet rebound angle remains unidentified. Here, we reveal a previously undiscovered droplet rebound behavior that the droplet rolls rapidly along the surface with a rebound angle close to 0 degrees, the limit of the droplet rebound angle. Such unexpected behavior originates from the droplet behaving like two mutually perpendicular springs enabled by continuous asymmetric adhesion provided by the heterogeneous modified nanostructure. This boundary-rolling behavior of droplets contributes to scientific and technical advances in various fields that involve droplet-impact, as illustrated through examples of enhanced cleaning efficiency (improved by 349%) and well-controlled droplet transport in tortuous passages which can hardly be achieved before without external fields coupling.

摘要

在包括自清洁、能量收集和微流体在内的许多领域中,调节液滴撞击固体表面后的运动状态至关重要。液滴的反弹角度是决定其运动状态的关键因素。然而,到目前为止,液滴反弹角度的极限仍未明确。在此,我们揭示了一种此前未被发现的液滴反弹行为,即液滴以接近0度的反弹角度沿表面快速滚动,这是液滴反弹角度的极限。这种意外行为源于液滴表现得像两个相互垂直的弹簧,这是由异质改性纳米结构提供的持续不对称粘附力所促成的。液滴的这种边界滚动行为推动了涉及液滴撞击的各个领域的科学技术进步,通过提高清洁效率(提高了349%)以及在没有外部场耦合的情况下以前几乎无法实现的在曲折通道中良好控制液滴传输的示例进行了说明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f986/12215476/80a589b30a80/41467_2025_61300_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验