文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用MRI影像组学模型对直肠膨出进行自动分级

Automated grading of rectocele with an MRI radiomics model.

作者信息

Lai Weiwei, Wang Shuang, Li Jiannan, Qi Rui, Zhao Zeyun, Wang Min

机构信息

Department of General Surgery, The Second Hospital of Jilin University, No. 4026 Yatai Street, Nanguan District, Changchun, 130000, Jilin, China.

Department of Dermatology, The Second Hospital of Jilin University, Changchun, China.

出版信息

Sci Rep. 2025 Jul 2;15(1):22939. doi: 10.1038/s41598-025-03463-0.


DOI:10.1038/s41598-025-03463-0
PMID:40592904
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12216658/
Abstract

To develop an automated grading model for rectocele (RC) based on radiomics and evaluate its efficacy. This study retrospectively analyzed a total of 9,392 magnetic resonance imaging (MRI) images obtained from 222 patients who underwent dynamic magnetic resonance defecography (DMRD) over the period from August 2021 to June 2023. The focus was specifically on the defecation phase images of the DMRD, as this phase provides critical information for assessing RC. To develop and evaluate the model, the MRI images from all patients were randomly divided into two groups. 70% of the data were allocated to the training cohort to build the model, and the remaining 30% was reserved as a test cohort to evaluate its performance. First, the severity of RC was assessed using the RC MRI grading criteria by two independent radiologists. To extract and select radiomic features, two additional radiologists independently delineated the regions of interest (ROIs). These features were then dimensionality reduced to retain only the most relevant data for the analysis. The radiomics features were reduced in dimension, and a machine learning model was developed using a Support Vector Machine (SVM). Finally, receiver operating characteristic curve (ROC) and area under the curve (AUC) were used to evaluate the classification efficiency of the model. The AUC (macro/micro) of the model using defecation phase images was 0.794/0.824, and the overall accuracy was 0.754. The radiomics model built using the combination of DMRD defecation phase images is well suited for grading RC and helping clinicians diagnose and treat the disease.

摘要

开发基于影像组学的直肠膨出(RC)自动分级模型并评估其效能。本研究回顾性分析了2021年8月至2023年6月期间222例行动态磁共振排粪造影(DMRD)患者的9392张磁共振成像(MRI)图像。重点关注DMRD的排粪期图像,因为该阶段为评估RC提供关键信息。为了开发和评估模型,将所有患者的MRI图像随机分为两组。70%的数据分配到训练队列以构建模型,其余30%留作测试队列以评估其性能。首先,由两名独立的放射科医生使用RC MRI分级标准评估RC的严重程度。为了提取和选择影像组学特征,另外两名放射科医生独立勾勒出感兴趣区域(ROI)。然后对这些特征进行降维,仅保留最相关的数据用于分析。对影像组学特征进行降维,并使用支持向量机(SVM)开发机器学习模型。最后,使用受试者操作特征曲线(ROC)和曲线下面积(AUC)评估模型的分类效率。使用排粪期图像的模型的AUC(宏观/微观)为0.794/0.824,总体准确率为0.754。使用DMRD排粪期图像组合构建的影像组学模型非常适合RC分级,并有助于临床医生诊断和治疗该疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07b/12216658/158000099664/41598_2025_3463_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07b/12216658/8dbff3aeca5a/41598_2025_3463_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07b/12216658/4547f243b919/41598_2025_3463_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07b/12216658/d04f399a22a5/41598_2025_3463_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07b/12216658/84989850d5fe/41598_2025_3463_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07b/12216658/4c13bb217d8c/41598_2025_3463_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07b/12216658/1f2f19cdc0cc/41598_2025_3463_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07b/12216658/158000099664/41598_2025_3463_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07b/12216658/8dbff3aeca5a/41598_2025_3463_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07b/12216658/4547f243b919/41598_2025_3463_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07b/12216658/d04f399a22a5/41598_2025_3463_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07b/12216658/84989850d5fe/41598_2025_3463_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07b/12216658/4c13bb217d8c/41598_2025_3463_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07b/12216658/1f2f19cdc0cc/41598_2025_3463_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d07b/12216658/158000099664/41598_2025_3463_Fig7_HTML.jpg

相似文献

[1]
Automated grading of rectocele with an MRI radiomics model.

Sci Rep. 2025-7-2

[2]
Machine learning-based brain magnetic resonance imaging radiomics for identifying rapid eye movement sleep behavior disorder in Parkinson's disease patients.

BMC Med Imaging. 2025-7-1

[3]
Imaging modalities for the detection of posterior pelvic floor disorders in women with obstructed defaecation syndrome.

Cochrane Database Syst Rev. 2021-9-23

[4]
Machine learning-based radiomics for differentiating lung cancer subtypes in brain metastases using CE-T1WI.

Front Oncol. 2025-6-19

[5]
Enhancing Preoperative Diagnosis of Subscapular Muscle Injuries with Shoulder MRI-based Multimodal Radiomics.

Acad Radiol. 2025-2

[6]
Gd-EOB-DTPA-enhanced MRI radiomics and deep learning models to predict microvascular invasion in hepatocellular carcinoma: a multicenter study.

BMC Med Imaging. 2025-3-31

[7]
Radiomics analysis based on dynamic contrast-enhanced MRI for predicting early recurrence after hepatectomy in hepatocellular carcinoma patients.

Sci Rep. 2025-7-1

[8]
Differentiation of Glioblastoma and Solitary Brain Metastasis Using Brain-Tumor Interface Radiomics Features Based on MR Images: A Multicenter Study.

Acad Radiol. 2025-7

[9]
MRI-Based Radiomics Methods for Predicting Ki-67 Expression in Breast Cancer: A Systematic Review and Meta-analysis.

Acad Radiol. 2024-3

[10]
CT-Based Machine Learning Radiomics Analysis to Diagnose Dysthyroid Optic Neuropathy.

Semin Ophthalmol. 2025-7

本文引用的文献

[1]
Ultrasound-Based Radiomics for the Classification of Henoch-Schönlein Purpura Nephritis in Children.

Ultrason Imaging. 2024-3

[2]
Nomogram model based on radiomics signatures and age to assist in the diagnosis of knee osteoarthritis.

Exp Gerontol. 2023-1

[3]
Evolution of Support Vector Machine and Regression Modeling in Chemoinformatics and Drug Discovery.

J Comput Aided Mol Des. 2022-5

[4]
Multi-label classification of pelvic organ prolapse using stress magnetic resonance imaging with deep learning.

Int Urogynecol J. 2022-10

[5]
Diagnosis of Renal Diseases Based on Machine Learning Methods Using Ultrasound Images.

Curr Med Imaging. 2021

[6]
MR defecography review.

Abdom Radiol (NY). 2021-4

[7]
Radiomics: Principles and radiotherapy applications.

Crit Rev Oncol Hematol. 2019-3-29

[8]
The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges.

Theranostics. 2019-2-12

[9]
Transperineal rectocele repair: a systematic review.

ANZ J Surg. 2017-10

[10]
Radiomics: Images Are More than Pictures, They Are Data.

Radiology. 2016-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索