文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

放射组学:原理与放疗应用。

Radiomics: Principles and radiotherapy applications.

机构信息

Department of Nuclear Medicine, Centre Henri-Becquerel, France; LITIS EA4108, Normandie University, Rouen, France.

Department of Radiation Oncology, Centre Léon Bérard, France.

出版信息

Crit Rev Oncol Hematol. 2019 Jun;138:44-50. doi: 10.1016/j.critrevonc.2019.03.015. Epub 2019 Mar 29.


DOI:10.1016/j.critrevonc.2019.03.015
PMID:31092384
Abstract

Radiomics is defined as the extraction of a large quantity of quantitative image features. The different radiomic indexes that have been proposed in the literature are described as well as the various factors that have an impact on the robustness of these indexes. We will see that several hundred quantitative features can be extracted per lesion and imaging modality. The ever-growing number of features studied raises the question of the statistical method of analysis used. This review addresses the research supporting the clinical use of radiomics in oncology in the staging of disease, discrimination between healthy and pathological tissues, the identification of genetic features, the prediction of patient survival, the response to treatment, the recurrence after radiotherapy and chemoradiotherapy and the side effects. Based on the existing literature, it remains difficult to identify features that should be used for current clinical practice.

摘要

放射组学被定义为大量定量图像特征的提取。本文描述了文献中提出的不同放射组学指标,以及影响这些指标稳健性的各种因素。我们将看到,每个病变和成像方式可以提取几百个定量特征。研究的特征数量不断增加,这就提出了所使用的分析统计方法的问题。这篇综述讨论了放射组学在肿瘤学中的临床应用研究,包括疾病分期、健康组织和病变组织的区分、基因特征的识别、患者生存预测、治疗反应、放疗和放化疗后复发以及副作用。基于现有文献,仍然难以确定哪些特征应该用于当前的临床实践。

相似文献

[1]
Radiomics: Principles and radiotherapy applications.

Crit Rev Oncol Hematol. 2019-3-29

[2]
Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology.

Ann Oncol. 2017-6-1

[3]
[Radiomics: the process and applications in tumor research].

Zhonghua Zhong Liu Za Zhi. 2018-11-23

[4]
Potential and limitations of radiomics in neuro-oncology.

J Clin Neurosci. 2021-8

[5]
"Radio-oncomics" : The potential of radiomics in radiation oncology.

Strahlenther Onkol. 2017-10

[6]
A deep look into radiomics.

Radiol Med. 2021-10

[7]
Development and clinical application of radiomics in lung cancer.

Radiat Oncol. 2017-9-15

[8]
The Rise of Radiomics and Implications for Oncologic Management.

J Natl Cancer Inst. 2017-7-1

[9]
Radiomics: A primer for the radiation oncologist.

Cancer Radiother. 2020-8

[10]
Delta radiomics: a systematic review.

Radiol Med. 2021-12

引用本文的文献

[1]
Computed tomography-based radiomics predicts prognostic and treatment-related levels of immune infiltration in the immune microenvironment of clear cell renal cell carcinoma.

BMC Med Imaging. 2025-7-1

[2]
Automated grading of rectocele with an MRI radiomics model.

Sci Rep. 2025-7-2

[3]
Identification and validation of molecular subtypes and prognostic models in patients with kidney cancer based on differential genes based on B cells: a multiomics analysis.

BMC Cancer. 2025-3-28

[4]
Radiomics approach for identifying radiation-induced normal tissue toxicity in the lung.

Sci Rep. 2024-10-16

[5]
Exploring the value of multiple preprocessors and classifiers in constructing models for predicting microsatellite instability status in colorectal cancer.

Sci Rep. 2024-9-1

[6]
The value of multiparametric MRI radiomics in predicting IDH genotype in glioma before surgery.

Front Oncol. 2023-11-27

[7]
Predicting vertebral compression fracture prior to spinal SBRT using radiomics from planning CT.

Eur Spine J. 2024-8

[8]
Artificial intelligence applied to image-guided radiation therapy (IGRT): a systematic review by the Young Group of the Italian Association of Radiotherapy and Clinical Oncology (yAIRO).

Radiol Med. 2024-1

[9]
A contrast-enhanced CT-based radiomic nomogram for the differential diagnosis of intravenous leiomyomatosis and uterine leiomyoma.

Front Oncol. 2023-8-23

[10]
Radiomics based predictive modeling of rectal toxicity in prostate cancer patients undergoing radiotherapy: CT and MRI comparison.

Phys Eng Sci Med. 2023-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索