Suppr超能文献

整合模糊形式概念分析、出人意料的流行方法和大语言模型的认知增强型地理空间决策框架。

Cognition-enhanced geospatial decision framework integrating fuzzy FCA, surprisingly popular method, and a large language model.

作者信息

Kwon Bongjae, Yu Kiyun

机构信息

Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea.

Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.

出版信息

Sci Rep. 2025 Jul 2;15(1):23089. doi: 10.1038/s41598-025-06508-6.

Abstract

This study introduces a cognition-enhanced framework for geospatial decision-making by integrating Fuzzy Formal Concept Analysis (FCA), the Surprisingly Popular (SP) method, and a Large Language Model (GPT-4o). Our approach captures cognitive influences that are often overlooked in traditional geospatial analyses. Fuzzy FCA is used to extract interpretable concept hierarchies from spatial data, while the GPT-4o model estimates SP scores, identifying choices that reflect underlying cognitive biases. These cognitively informed features are combined within machine learning models, improving both prediction accuracy and interpretability. Experiments on real-world urban mobility and environmental risk scenarios demonstrate significant performance gains, with models like XGBoost achieving an accuracy of 0.8412. We also introduce a novel method for evaluating the cognitive validity of LLM-generated model explanations, which involves assessing how well these explanations align with human intuition and reasoning. Our results show that incorporating cognitive elements into geospatial models not only improves outcomes but also bridges the gap between data-driven predictions and human decision-making. This framework offers broad potential for applications in GIS, urban planning, and environmental management.

摘要

本研究通过整合模糊形式概念分析(FCA)、超受欢迎(SP)方法和大语言模型(GPT-4o),引入了一种用于地理空间决策的认知增强框架。我们的方法捕捉了传统地理空间分析中经常被忽视的认知影响。模糊FCA用于从空间数据中提取可解释的概念层次结构,而GPT-4o模型估计SP分数,识别反映潜在认知偏差的选择。这些具有认知信息的特征在机器学习模型中进行组合,提高了预测准确性和可解释性。在现实世界的城市交通和环境风险场景上的实验表明性能有显著提升,像XGBoost这样的模型准确率达到了0.8412。我们还引入了一种评估大语言模型生成的模型解释的认知有效性的新方法,该方法涉及评估这些解释与人类直觉和推理的契合程度。我们的结果表明,将认知元素纳入地理空间模型不仅能改善结果,还能弥合数据驱动的预测与人类决策之间的差距。该框架在地理信息系统、城市规划和环境管理等应用中具有广阔的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验