Mukhtar Tanzila, Siebert Clara-Vita, Wang Yuejun, Pebworth Mark-Phillip, White Matthew L, Wu Tianzhi, Huang Tan Ieng, Zuo Guolong, Ross Jayden, Baltazar Jennifer, Upadhyay Varun, Shankar Merut, Zhou Li, Lombardi-Coronel Isabel, Mandala Ishaan, Adam Manal A, Wang Shaohui, Bi Qiuli, Hoekman Marco F M, Li Jingjing, Kriegstein Arnold R
Department of Neurology, University of California, San Francisco, CA, USA.
The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA, USA.
Nat Commun. 2025 Jul 1;16(1):5925. doi: 10.1038/s41467-025-61167-5.
Prenatal nicotine exposure impairs fetal cortical grey matter volume, but the precise cellular mechanisms remain poorly understood. This study elucidates the role of nicotinic acetylcholine receptors (nAChRs) in progenitor cells and radial glia (RG) during human cortical development. We identify two nAChR subunits-CHRNA7 and the human-specific CHRFAM7A-expressed in SOX2+ progenitors and neurons, with CHRFAM7A particularly enriched along RG endfeet. nAChR activation in organotypic slices and dissociated cultures increases RG proliferation while decreasing neuronal differentiation, whereas nAChR knockdown reduces RG and increases neurons. Single-cell RNA sequencing reveals that nicotine exposure downregulates key genes in excitatory neurons (ENs), with CHRNA7 or CHRFAM7A selectively modulating these changes, suggesting an evolutionary divergence in regulatory pathways. Furthermore, we identify YAP1 as a critical downstream effector of nAChR signaling, and inhibiting YAP1 reverses nicotine-induced phenotypic alterations in oRG cells, highlighting its role in nicotine-induced neurodevelopmental pathophysiology.
产前尼古丁暴露会损害胎儿皮质灰质体积,但具体的细胞机制仍知之甚少。本研究阐明了烟碱型乙酰胆碱受体(nAChRs)在人类皮质发育过程中对祖细胞和放射状胶质细胞(RG)的作用。我们鉴定出在SOX2 +祖细胞和神经元中表达的两个nAChR亚基——CHRNA7和人类特有的CHRFAM7A,其中CHRFAM7A在RG终足中尤其富集。器官型切片和原代培养中的nAChR激活增加了RG增殖,同时减少了神经元分化,而nAChR敲低则减少了RG并增加了神经元。单细胞RNA测序显示,尼古丁暴露会下调兴奋性神经元(ENs)中的关键基因,CHRNA7或CHRFAM7A可选择性调节这些变化,表明调控途径存在进化差异。此外,我们确定YAP1是nAChR信号传导的关键下游效应器,抑制YAP1可逆转尼古丁诱导的oRG细胞表型改变,突出了其在尼古丁诱导的神经发育病理生理学中的作用。