Wang Yunlong, Shi Jiuyang, Liang Zhixin, Huang Tianheng, Wang Junjie, Ding Chi, Pickard Chris J, Wang Hui-Tian, Xing Dingyu, Ni Dongdong, Sun Jian
National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, UK.
Nat Commun. 2025 Jul 1;16(1):5504. doi: 10.1038/s41467-025-61390-0.
Current studies show that oxygen does not aggregate into a polymeric phase even under pressures up to 10 TPa. To address the critical knowledge gap in understanding dense oxygen, here we show the complete polymerization process of oxygen, by using structure prediction methods. We determine the crystal structures of oxygen up to 1 PPa (1000 TPa), identifying a novel two-dimensionally bonded body-centered tetragonal (bct) phase and a fully polymerized hexagonal close-packed (hcp) phase. Electronic structure analysis reveals significant bond softening in the bct phase with increasing pressure, which may affect the dynamic behavior under finite temperatures. So, we employ the machine learning potential molecular dynamics and the two-phase method to construct the melting curve of oxygen up to 200 TPa (200 TPa, 23,740 K) and identify abnormal melting behavior beyond 100 TPa. We find oxygen exhibits higher thermal conductivity and lower isochoric heat capacity than helium at identical pressures. These results indicate that oxygen-rich envelopes may accelerate the cooling process of white dwarfs.
当前研究表明,即使在高达10太帕的压力下,氧也不会聚合成聚合物相。为了填补理解致密氧方面的关键知识空白,在此我们通过使用结构预测方法展示了氧的完整聚合过程。我们确定了高达1吉帕(1000太帕)的氧的晶体结构,识别出一种新型的二维键合体心四方(bct)相和一种完全聚合的六方密排(hcp)相。电子结构分析表明,随着压力增加,bct相中的键显著软化,这可能会影响有限温度下的动力学行为。因此,我们采用机器学习势分子动力学和两相法来构建高达200太帕(200太帕,23740 K)的氧的熔化曲线,并识别出超过100太帕时的异常熔化行为。我们发现,在相同压力下,氧比氦具有更高的热导率和更低的等容热容。这些结果表明,富氧包层可能会加速白矮星的冷却过程。