Monacelli Lorenzo, Bianco Raffaello, Cherubini Marco, Calandra Matteo, Errea Ion, Mauri Francesco
Dipartimento di Fisica, Università di Roma Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy.
Centro de Física de Materiales (CSIC-UPV/EHU), Manuel de Lardizabal pasealekua 5, 20018 Donostia/San Sebastián, Spain.
J Phys Condens Matter. 2021 Jul 13;33(36). doi: 10.1088/1361-648X/ac066b.
The efficient and accurate calculation of how ionic quantum and thermal fluctuations impact the free energy of a crystal, its atomic structure, and phonon spectrum is one of the main challenges of solid state physics, especially when strong anharmonicy invalidates any perturbative approach. To tackle this problem, we present the implementation on a modular Python code of the stochastic self-consistent harmonic approximation (SSCHA) method. This technique rigorously describes the full thermodynamics of crystals accounting for nuclear quantum and thermal anharmonic fluctuations. The approach requires the evaluation of the Born-Oppenheimer energy, as well as its derivatives with respect to ionic positions (forces) and cell parameters (stress tensor) in supercells, which can be provided, for instance, by first principles density-functional-theory codes. The method performs crystal geometry relaxation on the quantum free energy landscape, optimizing the free energy with respect to all degrees of freedom of the crystal structure. It can be used to determine the phase diagram of any crystal at finite temperature. It enables the calculation of phase boundaries for both first-order and second-order phase transitions from the Hessian of the free energy. Finally, the code can also compute the anharmonic phonon spectra, including the phonon linewidths, as well as phonon spectral functions. We review the theoretical framework of the SSCHA and its dynamical extension, making particular emphasis on the physical inter pretation of the variables present in the theory that can enlighten the comparison with any other anharmonic theory. A modular and flexible Python environment is used for the implementation, which allows for a clean interaction with other packages. We briefly present a toy-model calculation to illustrate the potential of the code. Several applications of the method in superconducting hydrides, charge-density-wave materials, and thermoelectric compounds are also reviewed.
高效且准确地计算离子量子涨落和热涨落如何影响晶体的自由能、原子结构和声子谱,是固态物理学的主要挑战之一,尤其是当强非谐性使任何微扰方法失效时。为解决这个问题,我们展示了随机自洽谐波近似(SSCHA)方法在模块化Python代码中的实现。该技术严格描述了晶体的完整热力学,同时考虑了核量子涨落和热非谐涨落。此方法需要评估玻恩 - 奥本海默能量,以及其相对于超胞中离子位置(力)和晶胞参数(应力张量)的导数,这些可以由例如第一性原理密度泛函理论代码提供。该方法在量子自由能景观上进行晶体几何结构弛豫,相对于晶体结构的所有自由度优化自由能。它可用于确定任何晶体在有限温度下的相图。它能够从自由能的海森矩阵计算一阶和二阶相变的相界。最后,该代码还可以计算非谐声子谱,包括声子线宽以及声子谱函数。我们回顾了SSCHA的理论框架及其动力学扩展,特别强调了该理论中变量的物理解释,这有助于与任何其他非谐理论进行比较。我们使用模块化且灵活的Python环境进行实现,这允许与其他包进行清晰的交互。我们简要展示了一个玩具模型计算以说明该代码的潜力。还回顾了该方法在超导氢化物、电荷密度波材料和热电化合物中的几个应用。