Li Guanxing, Hu Xiaojuan, Zou Chen, Li Songda, Han Zhong-Kang, Yuan Wentao, Zhang Ze, Wang Yong
Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China.
School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
Nat Commun. 2025 Jul 1;16(1):5661. doi: 10.1038/s41467-025-61335-7.
The distribution and interaction of oxygen vacancies (Vs) critically influence the properties of metal oxides, especially ceria, which is widely used in high-temperature industrial applications. However, V behavior at elevated temperatures remains poorly understood due to the complexity of their interactions and the lack of predictive models. Here, we uncover a periodic one-dimensional subsurface channel on CeO (110), formed by ordered V distributions at high temperatures. This discovery is enabled by in-situ scanning transmission electron microscopy (STEM), first-principles calculations, and a compressed sensing-assisted cluster expansion model. Strong repulsive interactions between neighboring Vs drive their ordering, which relieves local stress from Vs and polarons and promotes channel formation. A large band gap between the occupied O 2p and unoccupied Ce 4 f band centers helps stabilize this structure. The resulting subsurface channel features sub-nanometer pores and polaron accumulation, enabling directional proton transfer and provides insights into the high catalytic activity of ceria in hydrogenation reactions. These findings not only offer a deeper understanding of V interactions and their underlying mechanisms but also suggest strategies for tailoring V behavior in metal oxides for advanced catalytic and energy applications.
氧空位(Vs)的分布与相互作用对金属氧化物的性质有着至关重要的影响,尤其是二氧化铈,它在高温工业应用中被广泛使用。然而,由于其相互作用的复杂性以及缺乏预测模型,高温下V的行为仍未得到充分理解。在此,我们发现了CeO(110)上的一维周期性亚表面通道,它是由高温下有序的V分布形成的。这一发现借助原位扫描透射电子显微镜(STEM)、第一性原理计算以及压缩感知辅助团簇展开模型得以实现。相邻Vs之间的强排斥相互作用促使它们有序排列,从而减轻了Vs和极化子的局部应力并促进了通道的形成。占据的O 2p和未占据的Ce 4f能带中心之间的大带隙有助于稳定这种结构。由此产生的亚表面通道具有亚纳米级孔隙和极化子积累,能够实现定向质子转移,并为二氧化铈在氢化反应中的高催化活性提供了见解。这些发现不仅有助于更深入地理解V的相互作用及其潜在机制,还为在金属氧化物中调控V行为以实现先进的催化和能源应用提供了策略。